39 resultados para Local concrete damage model
Resumo:
The scattering of ortho-positronium (Ps) by H-2 has been investigated using a three-Ps-state (Ps(1s,2s, 2p)H-2(X (1)Sigma(g)(+))) coupled-channel model and using the Born approximation for higher excitations and ionization of Ps and B (1)Sigma(u)(+) and b (3)Sigma(u)(+) excitations of H-2. We employ a recently proposed time-reversal-symmetric non-local electron-exchange model potential. We present a calculational scheme for solving the body-frame fixed-nuclei coupled-channel scattering equations for Ps-H-2, which simplifies the numerical solution technique considerably. Ps ionization is found to have the leading contribution to target-elastic and all target-inelastic processes. The total cross sections at low and medium energies are in good agreement with experiment.
Resumo:
In this work the effect of the encapsulation of diclofenac sodium within liposomes on the reduction of the myotoxicity after intramuscular administration in rats was studied. Diclofenac sodium was encapsulated in small unilamellar liposomes obtained from phosphatidylcholine, cholesterol, and a-tocopherol (40:10:0.04 mM), and administered by intramuscular injection in the quadriceps femoral muscle of male Wistar rats. After a single dose of 0.2 mg diclofenac formulations the local tissue damage was assessed by plasma creatine kinase (CPK) activity and histological analysis. It was demonstrated that formulations containing free diclofenac produced a higher increase in CPK activity, while those encapsulated in liposomes exhibited CPK activity similar to the control groups. Histopathological analysis of local muscle tissue performed on the third and seventh days following the injection showed intense cellular damage when free drug solution was used, while encapsulation in liposome protected the tissue against the local tissue inflammation.
Resumo:
Snake venom metalloproteinases (SVMPs) participate in a number of important biological, physiological and pathophysiological processes and are primarily responsible for the local tissue damage characteristic of viperid snake envenomations. The use of medicinal plant extracts as antidotes against animal venoms is an old practice, especially against snake envenomations. Such plants are sources of many pharmacologically active compounds and have been shown to antagonize the effects of some venoms and toxins. The present study explores the activity of triacontyl p-coumarate (PCT), an active compound isolated from root bark of Bombacopsis glabra vegetal extract (Bg), against harmful effects of Bothropoides pauloensis snake venom and isolated toxins (SVMPs or phospholipase A2). Before inhibition assays, Bg or PCT was incubated with venom or toxins at ratios of 1:1 and 1:5 (w/w; venom or isolated toxins/PCT) for 30 min at 37 °C. Treatment conditions were also assayed to simulate snakebite with PCT inoculated at either the same venom or toxin site. PCT neutralized fibrinogenolytic activity and plasmatic fibrinogen depletion induced by B. pauloensis venom or isolated toxin. PCT also efficiently inhibited the hemorrhagic (3MDH-minimum hemorrhagic dose injected i.d into mice) and myotoxic activities induced by Jararhagin, a metalloproteinase from B. jararaca at 1:5 ratio (toxin: inhibitor, w/w) when it was previously incubated with PCT and injected into mice or when PCT was administered after toxin injection. Docking simulations using data on a metalloproteinase (Neuwiedase) structure suggest that the binding between the protein and the inhibitor occurs mainly in the active site region causing blockade of the enzymatic reaction by displacement of catalytic water. Steric hindrance may also play a role in the mechanism since the PCT hydrophobic tail was found to interact with the loop associated with substrate anchorage. Thus, PCT may provide a alternative to complement ophidian envenomation treatments. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Envenomation via snakebites is an important public health problem in many tropical and subtropical countries that, in addition to mortality, can result in permanent sequelae as a consequence of local tissue damage, which represents a major challenge to antivenom therapy. Venom phospholipases A(2) (PLA(2)s) and PLA(2)-like proteins play a leading role in the complex pathogenesis of skeletal muscle necrosis, nevertheless their precise mechanism of action is only partially understood. Recently, detailed structural information has been obtained for more than twenty different members of the PLA(2)-like myotoxin subfamily. In this review, we integrate the available structural, biochemical and functional data on these toxins and present a comprehensive hypothesis for their myotoxic mechanism. This process involves an allosteric transition and the participation of two independent interaction sites for docking and disruption of the target membrane, respectively, leading to a five-step mechanism of action. Furthermore, recent functional and structural studies of these toxins complexed with ligands reveal diverse neutralization mechanisms that can be classified into at least three different groups. Therefore, the data summarized here for the PLA(2)-like myotoxins could provide a useful molecular basis for the search for novel neutralizing strategies to improve the treatment of envenomation by viperid snakes. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
In this work, a non-linear Boundary Element Method (BEM) formulation with damage model is extended for numerical simulation of structural masonry walls in 2D stress analysis. The formulation is reoriented to analyse structural masonry, the component materials of which, clay bricks and mortar, are considered as damaged materials. Also considered are the internal variables and cell discretization of the domain. A damage model is used to represent the material behaviour and the domain discretization is also proposed and discussed. The paper presents the numerical parameters of the damage model for the material properties of the masonry components, clay bricks and mortar. Some examples are shown to validate the formulation.
Resumo:
Pós-graduação em Biopatologia Bucal - ICT
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Extracts of the spice ginger (Zingiber officinale Roscoe) are rich in gingerols and shogaols, which exhibit antioxidant, anti-inflammatory, antifungal, anti mycobacterial, and anticarcinogenic proprieties. The present study evaluated the chemoprotective effects of a ginger extract on the DNA damage and the development of bladder cancer induced by N-butyl-N-(4-hydroxibutyl) nitrosamine (BBN)/N-methyl-N-nitrosourea (MNU) in male Swiss mice. Groups G1-G3 were given 0.05% BBN in drinking water for 18 weeks and four i.p. injections of 30 mg/kg body weight MNU at 1, 3, 10, and 18 weeks. Group G4 and G5 received only the BBN or MNU treatments, respectively, and groups G6 and G7 were not treated with BBN or MNU. Additionally, Groups G2, G3, and G6 were fed diets containing 1, 2, and 2% ginger extract, respectively, while Groups G1, G4, G5, and G7 were fed basal diet. Samples of peripheral blood were collected during the experiment for genotoxicity analysis; blood collected 4 hr after each MNU dose was used for the analysis of DNA damage with the Comet assay (assay performed on leukocytes from all groups), while reficulocytes collected 24 hr after the last MNU treatment of Groups G5-G7 were used for the micronucleus assay. At the end of the experiment, the urinary bladder was removed, fixed, and prepared for histopathological, cell proliferation, and apoptosis evaluations. Ginger by itself was not genotoxic, and it did not alter the DNA damage levels induced by the BBN/MNU treatment during the course of the exposure. The incidence and multiplicity of simple and nodular hyperplasia and transitional cell carcinoma (TCC) were increased by the BBN/MNU treatment, but dietary ginger had no significant effect on these responses. However, in Group G2 (BBN/MNU/2% ginger-treated group), there was an increased incidence of Grade 2 TCC. The results suggest that ginger extract does not inhibit the development of BBN-induced mouse bladder tumors.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The mass transfer during osmotic dehydration of apple slices immersed in 40, 50 and 60% (w/w) aqueous sucrose solutions was investigated to evaluate the influence of solution concentration on diffusivities. In the mathematical model, the diffusion coefficients were functions of the local water and sucrose concentration. The mass transfer equations were, simultaneously, solved for water and sucrose using an implicit numerical method. Material coordinates following the shrinkage of the solid were used. The predicted concentration profiles were integrated and compared to experimental data, showing a reasonable agreement with the measured data. on average, the effective diffusion coefficients for water and sucrose decreased as the osmotic solution concentration increased; that is the behavior of the binary coefficients in water-sucrose solutions. However, the diffusivities expressed as a function of the local concentration in the slices varied between the treatments. Water diffusion coefficients showed a remarkable variation throughout the slice and unusual behavior, which was associated to the cellular structure changes observed in tissue immersed in osmotic solutions. Cell structure changes occurred in different ways: moderate plasmolysis at 40%, accentuated plasmolysis at 50% and generalized damage of the cells at 60%. Intact vacuoles were observed after a long time of exposure (30 h) to 40 and 50% solutions. Effects of the concentration on tissue changes make it difficult to generalize the behavior of diffusion coefficients.