103 resultados para Lipschitz trivial
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The lethargic crab disease (LCD) is an emergent infirmity that has decimated native populations of the mangrove land crab (Ucides cordatus, Decapoda: Ocypodidae) along the Brazilian coast. Several potential etiological agents have been linked with LCD, but only in 2005 was it proved that it is caused by an ascomycete fungus. This is the first attempt to develop a mathematical model to describe the epidemiological dynamics of LCD. The model presents four possible scenarios, namely, the trivial equilibrium, the disease-free equilibrium, endemic equilibrium, and limit cycles arising from a Hopf bifurcation. The threshold values depend on the basic reproductive number of crabs and fungi, and on the infection rate. These scenarios depend on both the biological assumptions and the temporal evolution of the disease. Numerical simulations corroborate the analytical results and illustrate the different temporal dynamics of the crab and fungus populations.
Resumo:
We show that the Einstein-Hilbert, the Einstein-Palatini, and the Holst actions can be derived from the Quadratic Spinor Lagrangian (QSL), when the three classes of Dirac spinor fields, under Lounesto spinor field classification, are considered. To each one of these classes, there corresponds an unique kind of action for a covariant gravity theory. In other words, it is shown to exist a one-to-one correspondence between the three classes of non-equivalent solutions of the Dirac equation, and Einstein-Hilbert, Einstein-Palatini, and Holst actions. Furthermore, it arises naturally, from Lounesto spinor field classification, that any other class of spinor field-Weyl, Majorana, flagpole, or flag-dipole spinor fields-yields a trivial (zero) QSL, up to a boundary term. To investigate this boundary term, we do not impose any constraint on the Dirac spinor field, and consequently we obtain new terms in the boundary component of the QSL. In the particular case of a teleparallel connection, an axial torsion one-form current density is obtained. New terms are also obtained in the corresponding Hamiltonian formalism. We then discuss how these new terms could shed new light on more general investigations.
Resumo:
The algebraic matrix hierarchy approach based on affine Lie sl(n) algebras leads to a variety of 1 + 1 soliton equations. By varying the rank of the underlying sl(n) algebra as well as its gradation in the affine setting, one encompasses the set of the soliton equations of the constrained KP hierarchy.The soliton solutions are then obtained as elements of the orbits of the dressing transformations constructed in terms of representations of the vertex operators of the affine sl(n) algebras realized in the unconventional gradations. Such soliton solutions exhibit non-trivial dependence on the KdV (odd) time flows and KP (odd and even) time Bows which distinguishes them From the conventional structure of the Darboux-Backlund-Wronskian solutions of the constrained KP hierarchy.
Resumo:
We show that the BRST charge for the N = 2 superstring system can be written as Q = e(-R)(phi dz/2 pi ib gamma(+)gamma(-))e(R), when b and gamma(+/-) are super-reparametrizations ghosts. This provides a trivial proof of the nilpotence of this operator. (C) 2000 Published by Elsevier B.V. B.V. All rights reserved.
Resumo:
We consider a field theory with target space being the two dimensional sphere S-2 and defined on the space-time S-3 x R. The Lagrangean is the square of the pull-back of the area form on S-2. It is invariant under the conformal group SO(4, 2) and the infinite dimensional group of area preserving diffeomorphisms of S-2. We construct an infinite number of exact soliton solutions with non-trivial Hopf topological charges. The solutions spin with a frequency which is bounded above by a quantity proportional to the inverse of the radius of S-3. The construction of the solutions is made possible by an ansatz which explores the conformal symmetry and a U(1) subgroup of the area preserving diffeomorphism group.
Resumo:
For m(2) < a(2) + q(2), with m, a, and q respectively the source mass, angular momentum per unit mass, and electric charge, the Kerr-Newman (KN) solution of Einstein's equation reduces to a naked singularity of circular shape, enclosing a disk across which the metric components fail to be smooth. By considering the Hawking and Ellis extended interpretation of the KN spacetime, it is shown that, similarly to the electron-positron system, this solution presents four inequivalent classical states. Making use of Wheeler's idea of charge without charge, the topological structure of the extended KN spatial section is found to be highly non-trivial, leading thus to the existence of gravitational states with half-integral angular momentum. This property is corroborated by the fact that, under a rotation of the space coordinates, those inequivalent states transform into themselves only after a 4π rotation. As a consequence, it becomes possible to naturally represent them in a Lorentz spinor basis. The state vector representing the whole KN solution is then constructed, and its evolution is shown to be governed by the Dirac equation. The KN solution can thus be consistently interpreted as a model for the electron-positron system, in which the concepts of mass, charge and spin become connected with the spacetime geometry. Some phenomenological consequences of the model are explored.
Resumo:
The zero curvature representation for two-dimensional integrable models is generalized to spacetimes of dimension d + 1 by the introduction of a d-form connection. The new generalized zero curvature conditions can be used to represent the equations of motion of some relativistic invariant field theories of physical interest in 2 + 1 dimensions (BF theories, Chern-Simons, 2 + 1 gravity and the CP1 model) and 3 + 1 dimensions (self-dual Yang-Mills theory and the Bogomolny equations). Our approach leads to new methods of constructing conserved currents and solutions. In a submodel of the 2 + 1-dimensional CP1 model, we explicitly construct an infinite number of previously unknown non-trivial conserved currents. For each positive integer spin representation of sl(2) we construct 2j + 1 conserved currents leading to 2j + 1 Lorentz scalar charges. (C) 1998 Elsevier B.V. B.V.
Resumo:
We propose a modification of standard linear electrodynamics in four dimensions, where effective non-trivial interactions of the electromagnetic field with itself and with matter fields induce Lorentz violating Chern-Simons terms. This yields two consequences: it provides a more realistic and general scenario for the breakdown of Lorentz symmetry in electromagnetism and it may explain the effective behavior of the electromagnetic field in certain planar phenomena (for instance, Hall effect). A number of proposals for non-linear electrodynamics is discussed along the paper. Important physical implications of the breaking of Lorentz symmetry, such as optical birefringence and the possibility of having conductance in the vacuum are commented on.
Resumo:
We introduce a master action in non-commutative space, out of which we obtain the action of the non-commutative Maxwell-Chern-Simons theory. Then, we look for the corresponding dual theory at both first and second order in the non-commutative parameter. At the first order, the dual theory happens to be, precisely, the action obtained from the usual commutative self-dual model by generalizing the Chern-Simons term to its non-commutative version, including a cubic term. Since this resulting theory is also equivalent to the non-commutative massive Thirring model in the large fermion mass limit, we remove, as a byproduct, the obstacles arising in the generalization to non-commutative space, and to the first non-trivial order in the non-commutative parameter, of the bosonization in three dimensions. Then, performing calculations at the second order in the non-commutative parameter, we explicitly compute a new dual theory which differs from the non-commutative self-dual model and, further, differs also from other previous results and involves a very simple expression in terms of ordinary fields. In addition, a remarkable feature of our results is that the dual theory is local, unlike what happens in the non-Abelian, but commutative case. We also conclude that the generalization to non-commutative space of bosonization in three dimensions is possible only when considering the first non-trivial corrections over ordinary space.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)