189 resultados para Lellurile glasses
Resumo:
Purpose: the purpose of the present study was to evaluate the histologic results of bone cavities that were surgically created in the mandibles of Cebus apella monkeys and filled with autogenous bone, PerioGlas, FillerBone, or Bone Source. Materials and Methods: Surgical cavities 5 mm in diameter were prepared through both mandibular cortices in the mandibular angle region. The cavities were randomly filled, and the animals were divided into groups according to the material employed: Group 1 cavities were filled with autogenous corticocancellous bone; group 2 cavities were filled with calcium phosphate cement (BoneSource); and group 3 and group 4 cavities were filled with bioactive glass (FillerBone and PerioGlas, respectively). After 180 days the animals were sacrificed, and specimens were prepared following routine laboratory procedures for hematoxylin/eosin staining and histologic evaluation. Results: the histologic analysis showed that autogenous bone allowed total repair of the bone defects; bioactive glasses (FillerBone and PerioGlas) allowed total repair of the defects with intimate contact of the remaining granules and newly formed bone; and the cavities filled with calcium phosphate cement (BoneSource) were generally filled by connective fibrous tissue, and the material was almost totally resorbed. Discussion: the autogenous bone, FillerBone, and PerioGlas provided results similar to those in the current literature, showing that autogenous bone is the best Choice for filling critical-size defects. Synthetic implanted materials demonstrated biocompatibility, but the bioglasses demonstrated osteoconductive activity that did not occur with calcium phosphate (BoneSource). Conclusion: According to the methodology used in this study, it can be concluded that the utilization of autogenous bone and bioactive glasses permitted the repair of surgically created critical-size defects by newly formed bone; the synthetic implanted materials demonstrated biocompatibility, and the bioactive glasses demonstrated osteoconductive activity. The PerioGlas was mostly resorbed and replaced by bone and the remaining granules were in close contact with bone; the FillerBone showed many granules in contact with the newly formed bone; BoneSource did not permit repair of the critical-size defects, and the defects were generally filled by connective fibrous tissue.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Multicolor and white light emissions have been achieved in Yb3+, Tm3+ and Ho3+ triply doped heavy metal oxide glasses upon laser excitation at 980 nm. The red (660 nm), green (547 nm) and blue (478 nm) up conversion emissions of the rare earth (RE) ions triply doped TeO2-GeO2-Bi2O3-K2O glass (TGBK) have been investigated as a function of the RE concentration and excitation power of the 980 nm laser diode. The most appropriate combination of RE in the TGBK glass host (1.6 wt% Yb2O3, 0.6 wt% Tm2O3 and 0.1 wt% Ho2O3) has been determined with the purpose to tune the primary colors (RGB) respective emissions and generate white light emission by varying the pump power. The involved infrared to visible up conversion mechanisms mainly consist in a three-photon blue up conversion of Tm3+ ions and a two-photon green and red up conversions of Ho3+ ions. The resulting multicolor emissions have been described according to the CIE-1931 standards. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this work we have studied pure and thulium- and chromium-doped ZBLAN glasses irradiated by ultra-short laser pulses. A Ti:sapphire CPA system was used, producing a 500 Hz train of pulses, centered at 830 nm, with 375 mu J of energy and 50 fs of duration (FWHM). The beam was focused by a 20 Him lens, producing a converging beam with a waist of 12 pin. The absorption spectra before and after laser irradiation were obtained showing production of color centers in pure, thulium-doped and chromium-doped ZBLAN glasses. A damage threshold of 9.56 TW/cm(2) was determined for ZBLAN. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In this work, vitreous samples were prepared in the binary system (100 - x)NaPO3-xMO(3) with M = Mo and W and x varying from 10 to 60. The transmittance properties in the UV, visible, and near-infrared were monitored as a function of MO3 concentration. In both cases, an increase in the amount of transition metal results in an intense and broad absorption band in the visible and near-infrared attributed to metal reduction under synthesis conditions. It was shown that this large absorption can be partially or totally removed using specific oxidizing agents or by improving synthesis parameters such as melting temperature or cooling rate of the melt. In addition, structural investigations by Raman and X-ray absorption spectroscopy suggest that reduction only occurs when the metal cation is in octahedral geometry and that the transmittance improvement is not related with any structural changes. These results were explained in terms of thermodynamic equilibrium of redox species in the melt and allowed to obtain for the first time transparent and chemically stable glasses containing high concentrations of MO3 with transition metals in octahedral geometry inside the glass network.
Resumo:
Crystalline lead-pyrophosphate precursor was prepared in aqueous solution from lead nitrate and phosphoric acid and characterized by X-ray diffraction, thermogravimetry and Raman scattering. This crystalline lead-phosphate was then used to prepare glass samples in the binary system Pb(2)P(2)O(7)-WO(3). Dependence of WO(3) content on thermal, structural and optical properties were investigated by thermal analysis (DSC), Raman spectroscopy, UV-visible and near-infrared absorption and M-Line technique to access refractive index values. Incorporation of WO(3) in the lead-pyrophosphate matrix enhances the glass transition temperature and thermal stability against devitrification, favors formation of P-O-W bonds and WO(6) clusters. In addition, optical properties are strongly modified with a redshift of the optical bandgap with WO(3) incorporation as well as an increase of the refractive index from 1.89 to 2.05 in the visible. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Erbium L-3-edge extended x-ray absorption fine structure (EXAFS) measurements were performed on rare earth doped fluorosilicate and fluoroborate glasses and glass ceramics. The well known nucleating effects of erbium ions for the crystallization of cubic lead fluoride (based on x-ray diffraction measurements) and the fact that the rare earth ions are present in the crystalline phase (as indicated by Er3+ emission spectra) seem in contradiction with the present EXAFS analysis, which indicates a lack of medium range structural ordering around the Er3+ ions and suggests that the lead fluoride crystallization does not occur in the nearest neighbor distance of the rare earth ion. Molecular dynamics simulations of the devitrification process of a lead fluoride glass doped with Er3+ ions were performed, and results indicate that Er3+ ions lower the devitrification temperature of PbF2, in good agreement with the experimental results. The genuine role of Er3+ ions in the devitrification process of PbF2 has been investigated. Although Er3+ ions could indeed act as seeds for crystallization, as experiments suggest, molecular dynamics simulation results corroborate the experimental EXAFS observation that the devitrification does not occur at its nearest neighbor distance. (c) 2008 American Institute of Physics.
Resumo:
Their extended transparency in the IR makes them attractive for use as optical fibers for CO laser power delivery and optical amplification. This paper firstly describes the spectacular stabilizing effect of MgF2 on the binary system InF3-BaF2. The investigation of the InF3-BaF2-MgF2 system led to samples up to 5mm in thickness. Further optimization of this system was achieved by incorporation of limited amounts of other fluorides and resulted in increased resistence to devitrification. The second approach of this work was concerned to the investigation of the pseudo-ternary system InF3-GdF3-GaF3 at constant concentrations of ZnF2-SrF2-BaF2-NaF. Several compositions were studied in this system. The samples presented a better thermal stability when compared to other families of fluoride glasses. Therefore, these glasses seem to be very promising for the fabrication of special optical fibers. Thermal data are reported.
Resumo:
In this paper, glasses in the systems In-Ba-Mg and In-Ba-Zn-Sr-Mg were water leachead at 80ºC showing surface degradation after 72 hours of leaching. The extent of such degradation is determined by the solubility and the concentration of the elemental fluorides that constitute the glasses. The formation of a layer of crystallized phases on the surface of the samples was observed. Small weight losses were registered and the absence of water on the glass matrix after the attack suggested that the use of MgF2 in the systems studied can lead to better results against moisture corrosion when compared to other fluoride glasses such as the fluorozirconates.