20 resultados para Learning behavior


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semi-supervised learning is applied to classification problems where only a small portion of the data items is labeled. In these cases, the reliability of the labels is a crucial factor, because mislabeled items may propagate wrong labels to a large portion or even the entire data set. This paper aims to address this problem by presenting a graph-based (network-based) semi-supervised learning method, specifically designed to handle data sets with mislabeled samples. The method uses teams of walking particles, with competitive and cooperative behavior, for label propagation in the network constructed from the input data set. The proposed model is nature-inspired and it incorporates some features to make it robust to a considerable amount of mislabeled data items. Computer simulations show the performance of the method in the presence of different percentage of mislabeled data, in networks of different sizes and average node degree. Importantly, these simulations reveals the existence of the critical points of the mislabeled subset size, below which the network is free of wrong label contamination, but above which the mislabeled samples start to propagate their labels to the rest of the network. Moreover, numerical comparisons have been made among the proposed method and other representative graph-based semi-supervised learning methods using both artificial and real-world data sets. Interestingly, the proposed method has increasing better performance than the others as the percentage of mislabeled samples is getting larger. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we show that the fish Nile tilapia displays an antipredator response to chemical cues present in the blood of conspecifics. This is the first report of alarm response induced by blood-borne chemical cues in fish. There is a body of evidence showing that chemical cues from epidermal 'club' cells elicit an alarm reaction in fish. However, the chemical cues of these 'club' cells are restricted to certain species of fish. Thus, as a parsimonious explanation, we assume that an alarm response to blood cues is a generalized response among animals because it occurs in mammals, birds and protostomian animals. Moreover, our results suggest that researchers must use caution when studying chemically induced alarm reactions because it is difficult to separate club cell cues from traces of blood. © 2013 Barreto et al.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies have demonstrated that nutrient deficiency during pregnancy or in early postnatal life results in structural abnormalities in the offspring hippocampus and in cognitive impairment. In an attempt to analyze whether gestational protein restriction might induce learning and memory impairments associated with structural changes in the hippocampus, we carried out a detailed morphometric analysis of the hippocampus of male adult rats together with the behavioral characterization of these animals in the Morris water maze (MWM). Our results demonstrate that gestational protein restriction leads to a decrease in total basal dendritic length and in the number of intersections of CA3 pyramidal neurons whereas the cytoarchitecture of CA1 and dentate gyrus remained unchanged. Despite presenting significant structural rearrangements, we did not observe impairments in the MWM test. Considering the clear dissociation between the behavioral profile and the hippocampus neuronal changes, the functional significance of dendritic remodeling in fetal processing remains undisclosed. © 2012 ISDN.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plant phenology is one of the most reliable indicators of species responses to global climate change, motivating the development of new technologies for phenological monitoring. Digital cameras or near remote systems have been efficiently applied as multi-channel imaging sensors, where leaf color information is extracted from the RGB (Red, Green, and Blue) color channels, and the changes in green levels are used to infer leafing patterns of plant species. In this scenario, texture information is a great ally for image analysis that has been little used in phenology studies. We monitored leaf-changing patterns of Cerrado savanna vegetation by taking daily digital images. We extract RGB channels from the digital images and correlate them with phenological changes. Additionally, we benefit from the inclusion of textural metrics for quantifying spatial heterogeneity. Our first goals are: (1) to test if color change information is able to characterize the phenological pattern of a group of species; (2) to test if the temporal variation in image texture is useful to distinguish plant species; and (3) to test if individuals from the same species may be automatically identified using digital images. In this paper, we present a machine learning approach based on multiscale classifiers to detect phenological patterns in the digital images. Our results indicate that: (1) extreme hours (morning and afternoon) are the best for identifying plant species; (2) different plant species present a different behavior with respect to the color change information; and (3) texture variation along temporal images is promising information for capturing phenological patterns. Based on those results, we suggest that individuals from the same species and functional group might be identified using digital images, and introduce a new tool to help phenology experts in the identification of new individuals from the same species in the image and their location on the ground. © 2013 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both Semi-Supervised Leaning and Active Learning are techniques used when unlabeled data is abundant, but the process of labeling them is expensive and/or time consuming. In this paper, those two machine learning techniques are combined into a single nature-inspired method. It features particles walking on a network built from the data set, using a unique random-greedy rule to select neighbors to visit. The particles, which have both competitive and cooperative behavior, are created on the network as the result of label queries. They may be created as the algorithm executes and only nodes affected by the new particles have to be updated. Therefore, it saves execution time compared to traditional active learning frameworks, in which the learning algorithm has to be executed several times. The data items to be queried are select based on information extracted from the nodes and particles temporal dynamics. Two different rules for queries are explored in this paper, one of them is based on querying by uncertainty approaches and the other is based on data and labeled nodes distribution. Each of them may perform better than the other according to some data sets peculiarities. Experimental results on some real-world data sets are provided, and the proposed method outperforms the semi-supervised learning method, from which it is derived, in all of them.