21 resultados para Laplace–Carson transform
Resumo:
With the widespread proliferation of computers, many human activities entail the use of automatic image analysis. The basic features used for image analysis include color, texture, and shape. In this paper, we propose a new shape description method, called Hough Transform Statistics (HTS), which uses statistics from the Hough space to characterize the shape of objects or regions in digital images. A modified version of this method, called Hough Transform Statistics neighborhood (HTSn), is also presented. Experiments carried out on three popular public image databases showed that the HTS and HTSn descriptors are robust, since they presented precision-recall results much better than several other well-known shape description methods. When compared to Beam Angle Statistics (BAS) method, a shape description method that inspired their development, both the HTS and the HTSn methods presented inferior results regarding the precision-recall criterion, but superior results in the processing time and multiscale separability criteria. The linear complexity of the HTS and the HTSn algorithms, in contrast to BAS, make them more appropriate for shape analysis in high-resolution image retrieval tasks when very large databases are used, which are very common nowadays. (C) 2014 Elsevier Inc. All rights reserved.
Resumo:
Non-Hodgkin lymphomas are of many distinct types, and different classification systems make it difficult to diagnose them correctly. Many of these systems classify lymphomas only based on what they look like under a microscope. In 2008 the World Health Organisation (WHO) introduced the most recent system, which also considers the chromosome features of the lymphoma cells and the presence of certain proteins on their surface. The WHO system is the one that we apply in this work. Herewith we present an automatic method to classify histological images of three types of non-Hodgkin lymphoma. Our method is based on the Stationary Wavelet Transform (SWT), and it consists of three steps: 1) extracting sub-bands from the histological image through SWT, 2) applying Analysis of Variance (ANOVA) to clean noise and select the most relevant information, 3) classifying it by the Support Vector Machine (SVM) algorithm. The kernel types Linear, RBF and Polynomial were evaluated with our method applied to 210 images of lymphoma from the National Institute on Aging. We concluded that the following combination led to the most relevant results: detail sub-band, ANOVA and SVM with Linear and RBF kernels.
Resumo:
This paper presents two diagnostic methods for the online detection of broken bars in induction motors with squirrel-cage type rotors. The wavelet representation of a function is a new technique. Wavelet transform of a function is the improved version of Fourier transform. Fourier transform is a powerful tool for analyzing the components of a stationary signal. But it is failed for analyzing the non-stationary signal whereas wavelet transform allows the components of a non-stationary signal to be analyzed. In this paper, our main goal is to find out the advantages of wavelet transform compared to Fourier transform in rotor failure diagnosis of induction motors.
Resumo:
Research on image processing has shown that combining segmentation methods may lead to a solid approach to extract semantic information from different sort of images. Within this context, the Normalized Cut (NCut) is usually used as a final partitioning tool for graphs modeled in some chosen method. This work explores the Watershed Transform as a modeling tool, using different criteria of the hierarchical Watershed to convert an image into an adjacency graph. The Watershed is combined with an unsupervised distance learning step that redistributes the graph weights and redefines the Similarity matrix, before the final segmentation step using NCut. Adopting the Berkeley Segmentation Data Set and Benchmark as a background, our goal is to compare the results obtained for this method with previous work to validate its performance.
Resumo:
Despite the efficacy of minutia-based fingerprint matching techniques for good-quality images captured by optical sensors, minutia-based techniques do not often perform so well on poor-quality images or fingerprint images captured by small solid-state sensors. Solid-state fingerprint sensors are being increasingly deployed in a wide range of applications for user authentication purposes. Therefore, it is necessary to develop new fingerprint-matching techniques that utilize other features to deal with fingerprint images captured by solid-state sensors. This paper presents a new fingerprint matching technique based on fingerprint ridge features. This technique was assessed on the MSU-VERIDICOM database, which consists of fingerprint impressions obtained from 160 users (4 impressions per finger) using a solid-state sensor. The combination of ridge-based matching scores computed by the proposed ridge-based technique with minutia-based matching scores leads to a reduction of the false non-match rate by approximately 1.7% at a false match rate of 0.1%. © 2005 IEEE.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)