43 resultados para Kinetics analysis
Resumo:
The kinetics of Ag-rich precipitates formation in the Cu-2 wt.% Al alloy with additions of 2, 4, 6, 8, 10 and 12 wt.% Ag was studied using microhardness changes with temperature and time, differential scanning calorimetry (DSC), differential thermal analysis (DTA), scanning electron microscopy (SEM), optical microscopy (OM), energy dispersive X-ray analysis (EDX) and X-ray diffractometry (XRD). The results indicated that an increase in the Ag content decreases the activation energy for Ag-rich precipitates formation, and that it is possible to estimate the values of the diffusion and nucleation activation energies for the Ag precipitates. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The influence of 4 wt.%Ag addition on the isothermal decomposition kinetics of the beta' phase in the Cu-9wt.%Al alloy was studied by microhardness measurements, optical and scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, and X-ray diffractometry. The results showed that the presence of Ag decreases the beta' --> (alpha + gamma(1)) decomposition reaction rate in the Cu-9%Al-4%Ag alloy, an effect that may be associated to the gamma(1) phase which catalyses the Ag precipitation, making it faster than the decomposition reaction, and thus, stabilizing the martensitic phase. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The recycling of soft drink bottles poly(ethylene terephthalate) (PET) has been used as an additive in varnish containing alkyd resin. The PET, called to recycled PET (PET-R), was added to the varnish in increasing amounts. Samples of varnish containing PET-R (VPET-R) were used as a film onto slides and its thermal properties were evaluated using thermogravimetry (TG). Throughout the visual analysis and thermal behavior of VPET-R it is possible to identify that the maximum amount of PET-R added to the varnish without changing in the film properties was 2%.The kinetic parameters, such as activation energy (E) and the pre-exponential factor (A) were calculated by the isoconversional Flynn-Wall-Ozawa method for the samples containing 0.5 to 2.0% PET-R. A decrease in the values of E was verified for lower amounts of PET-R for the thermal decomposition reaction. A kinetic compensation effect (KCE) represented by the lnA=-13.42+0.23E equation was observed for all samples. The most suitable kinetic model to describe this decomposition process is the autocatalytic Sestak-Berggren, being the model applied to heterogeneous systems.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fluoride glasses have been extensively studied due to their high transparency in the infrared wavelength. The crystallization kinetics of these systems has been studied using DTA and DSC techniques. Most of the experimental data is frequently investigated in terms of the Johnson-Mehl-Avrami (JMA) model in order to obtain kinetic parameters.In this work, DSC technique has been used to study the crystallization of fluorozirconate glass under non-isothermal conditions. It was found that JMA model was not fit to be applied directly to these systems, therefore, the method proposed by Malek has been applied and the Sestak-Berggren (SB) model seems to be adequate to describe the crystallization process.
Resumo:
5-Nitro-8-hydroxyquinoline (B) and 5,7-dinitro-8-hydroxyquinoline (C) were obtained from nitration of 8-hydroxyquinoline (A) and purified in acetone medium and under heating in which the formation of (B) or (C) depends on the amount of HNO3 added. TG curves present mass loss in only one step before and after the melting point (T-m=76 degreesC (A) and 180 degreesC (B)) in different proportions as a function of the heating rate, characterising the sublimation and the volatilisation processes, respectively. The thermal stability of the compounds follow the order: A (77 degreesC)
Resumo:
The thermal behavior and non-isothermal kinetics of thermal decomposition of three different kinds of composting of the USR like: stack with drilled PVC tubes (ST), revolved stack (SR) and stack with material of structure (SM), from the usine of composing of Araraquara city, São Paulo state, Brazil, within a period of 132 days of composting were studied.Results from TG, DTG and DSC curves obtained on inert atmosphere indicated that the cellulosic fraction present, despite the slow degradation during the composting process, is thermally less stable than other substances originated from that process. Due to that behavior, the cellulosic fraction decomposition could be kinetically evaluated through non-isothermal methods of analysis.The values obtained were: average activation energy, E-a=248, 257 and 259 kJ mol(-1) and pre-exponential factor, logA=21.4, 22.5, 22.7 min(-1), to the ST, SR and SM, respectively.From E-a and logA values and DSC curves, Malek procedure could be applied, suggesting that the SB (Sestak-Berggren) kinetic model is the appropriated one to the first thermal decomposition step.
Resumo:
The 3-isobutyl-1-methylxanthine (IBMX) is able to prevent resumption of meiosis by maintaining elevated cyclic AMP (cAMP) concentrations in the oocyte, and roscovitine, a purine known to specifically inhibit MPF kinase activity, maintains bovine oocytes at the germinal vesicle (GV) stage. The present study was conducted to analyze whether cytoplasmic maturation (examined by the pattern of cortical granule (CG) distribution) of bovine oocytes is improved during meiotic arrest with IBMX and roscovitine. Oocytes were matured in vitro in a 10% Knockout(SR) supplemented TCM-199 medium (Control) with either 0.5 mM IBMX or 25 mu M roscovitine (ROSC). Oocytes were stained with fluorescein isothiocyanate conjugated Lens culinaris agglutinin (FITC-LCA) for CG evaluation and with Hoechst 33342 for nuclear stage assessment. At 16 h of culture, the percentage of oocytes remaining in the GV stage was higher (P < 0.05) in the ROSC group (32.41%) compared with the Control and IBMX groups (8.61% and 9.73%, respectively). At 24h of culture, progression of meiosis to M II stage was retarded (P < 0.05) in the ROSC group (24.05%) compared to the Control (60.20%), whereas the IBMX group (33.88%) showed no significant difference to the other two groups. At 16h of maturation, the proportion of oocytes with CG in clusters (immature cytoplasm) was similar between the groups, as was the percentage of peripheral CG (mature) at 24h of maturation. The results of the present study demonstrated that the meiotic inhibitors IBMX and roscovitine delay the progression of nuclear maturation without affecting cytoplasmic maturation, assessed by the analysis of CG repositioning. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Drying kinetics of tomato was studied by using heat pump dryer (HPD) and electric resistance dryers with parallel and crossed airflow. The performance of both systems was evaluated and compared and the influence of temperature, air velocity, and tomato type on the drying kinetics was analyzed. The use of HPD showed to be adequate in the drying process of tomatoes, mainly in relation to the conversion rate of electric energy into thermal energy. The heat pump effective coefficient of performance (COPHT,EF) was between 2.56 and 2.68, with an energy economy of about 40% when compared to the drying system with electric resistance. The Page model could be used to predict drying time of tomato and statistical analysis showed that the model parameters were mainly affected by drying temperature.
Resumo:
This work aims the evaluation of the kinetic triplets corresponding to the two successive steps of thermal decomposition of Ti(IV)-ethylenediaminetetraacetate complex. Applying the isoconversional Wall-Flynn-Ozawa method on the DSC curves, average activation energy: E=172.4 +/- 9.7 and 205.3 +/- 12.8 kJ mol(-1), and pre-exponential factor: logA = 16.38 +/- 0.84 and 18.96 +/- 1.21 min(-1) at 95% confidence interval could be obtained, regarding the partial formation of anhydride and subsequent thermal decomposition of uncoordinated carboxylate groups, respectively.From E and logA values, Dollimore and Malek methods could be applied suggesting PT (Prout-Tompkins) and R3 (contracting volume) as the kinetic model to the partial formation of anhydride and thermal decomposition of the carboxylate groups, respectively.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The intra- and intermolecular rates of degradation of cephaclor were determined with and without hexadecyltrimethylammonium bromide (CTABr). Micellar-derived spectral shifts were used to measure the association of the ionic forms as well as to determine the effect of CTABr on the apparent acid dissociation constant of the antibiotic. The rate of degradation of cephaclor increased with detergent and was salt sensitive. Micellar effects were analyzed quantitatively within the frame-work of the speudophase ion exchange model. All experimental data were fitted to this model which was used to predict the combined effects of pH and detergent concentration. Micelles increased the rate of OH- attack on cephaclor; most of the effect was due to the concentration of reagents in the micellar pseudophase. The intramolecular degradation was catalyzed 25-fold by micelles, and a working hypothesis to rationalize this effect is proposed. The results demonstrate that quantitative analysis can be utilized to assess and predict effects of detergents on drug stability.
Resumo:
Thermal degradation of natural rubber extracted from four different rubber clones of the Hevea brasiliensis species was investigated by thermogravimetry using Ozawa's approach to assess the kinetic parameters of the decomposition process. The results are discussed in terms of the order of reaction, kinetic parameters such as activation energy as a function of conversion degree, and thermal stability for each of the clones.
Resumo:
The effect of combining the photocatalytic processes using TiO 2 and the photo-Fenton reaction with Fe3+ or ferrioxalate as a source of Fe2+ was investigated in the degradation of 4-chlorophenol (4CP) and dichloroacetic acid (DCA) using solar irradiation. Multivariate analysis was used to evaluate the role of three variables: iron, H2O2 and TiO2 concentrations. The results show that TiO2 plays a minor role when compared to iron and H2O2 in the solar degradation of 4CP and DCA in the studied conditions. However, its presence can improve TOC removal when H2O2 is totally consumed. Iron and peroxide play major roles, especially when Fe(NO3)3 used in the degradation of 4CP. No significant synergistic effect was observed by the addition of TiO 2 in this process. On the other hand, synergistic effects were observed between FeOx and TiO2 and between H 2O2 and TiO2 in the degradation of DCA. © IWA Publishing 2004.
Resumo:
Purine nucleoside phosphorylase (PNP) catalyzes the reversible phosphorolysis of nucleosides and deoxynucleosides, generating ribose 1-phosphate and the purine base, which is an important step of purine catabolism pathway. The lack of such an activity in humans, owing to a genetic disorder, causes T-cell impairment, and drugs that inhibit this enzyme may have the potential of being utilized as modulators of the immunological system to treat leukemia, autoimmune diseases, and rejection in organ transplantation. Here, we describe kinetics and crystal structure of human PNP in complex with 7-methyl-6-thio-guanosine, a synthetic substrate, which is largely used in activity assays. Analysis of the structure identifies different protein conformational changes upon ligand binding, and comparison of kinetic and structural data permits an understanding of the effects of atomic substitution on key positions of the synthetic substrate and their consequences to enzyme binding and catalysis. Such knowledge may be helpful in designing new PNP inhibitors. © 2005 Elsevier Inc. All rights reserved.