151 resultados para Isostatic pressing.
Resumo:
Pós-graduação em Reabilitação Oral - FOAR
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
The research involving new materials has always been considered as a differential in the development of a technology company. This occurred naturally since ancient times, often motivated by reasons of a certain age, where the most common material used was also the name of your time and may be cited as an example the Bronze Age, and later was the Iron. Currently, the use of firearms are they used in resolving conflicts between countries, or a more equivocal, as an instrument of social banditry make innovations in the area of shielding welcome, whether for personal use, in the form of vests or vehicle such as cars, tanks and even aircraft. In this context, is a Silicon Carbide Ceramic, with low density and high hardness. Thus, the aim of this study is the evaluation and comparison of these materials, seeking to improve their properties by means of additives such as boron and silicon metal and amorphous YAG. For this work, the specimens were pre-shaped by means of uniaxial later to be referred for isostatic pressing and sintering. The maximum percentage for each additive was 5%, except for the YAG whose percentage was 8.2% (mass percentage). All compositions were subjected to the same tests (x-ray diffraction, apparent density, optical microscopy, Vickers hardness, scanning electron Microscopita), so that one could draw a comparison between the materials under study, samples that showed better mechanical properties and micro structural, related here by hardness testing and microscopy (optical and SEM) were the silicon carbide doped with YAG and alumina samples, demonstrating the potential of these materials for ballistic protection. Other compositions have high porosity, which is highly undesirable, since in order to harmful influences on the mechanical properties discussed below
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This paper presents the study results with glass-ceramics obtained from base glass (MgO-Al2O3- SiO2-Li2O system) with addition of ZrO2 as nucleating agent. The glass was melted at 1650 degrees C for 3 h and at a heating rate of 10 degrees C/min. The molten glass was poured into a graphite mold to obtain monolithic samples and also in water in order to obtain particulate material. Such material was grinded and then pressed by both uniaxial and isostatic pressing methods before being sintered. Both the monolithic and pressed samples were performed under two different conditions of heat treatment so that their nucleation and crystallization occurred. In the first one, the samples were heated to 1100 degrees C with a heating rate of 10 degrees C/min. In the second one, there was an initial heating rate of 10 degrees C/min up to 780 degrees C, which was kept for 5 minutes. After that, the samples were heated to 1100 degrees C at a heating rate of 1 degrees C/min. Microhardness analyses showed that base glass presented values around 7.0 GPa. The glass-ceramics obtained from the powder sintering showed microhardness values lower than those obtained from monolithic samples. The highest hardness values were observed in the samples which were treated with two heating rates, whose values were around 9.2 +/- 0.5 GPa. Moreover, the glass-ceramics which were produced with an only heating rate, presented values around 7.1 +/- 0.2 GPa, very close to those observed in the base glass.
Resumo:
This work discusses on the preparation of Ni-45Ti-5Mo, Ni-40Ti-10Mo and Ni-46Ti-2Mo-2Zr (at-%) alloys by high-energy ball milling and hot pressing, which are potentially attractive for dental and medical applications. The milling process was performed in stainless steel balls (19mm diameter) and vials (225 mL) using a rotary speed of 300rpm and a ball-to-powder weight ratio of 10:1. Hot pressing under vacuum was performed in a BN-coated graphite crucible at 900 degrees C for 1 h using a load of 20 MPa. The milled and hot-pressed materials were characterized by X-ray diffraction, electron scanning microscopy, and electron dispersive spectrometry. Peaks of B2-NiTi and Ni4Ti3 were identified in XRD patterns of Ni-45Ti-5Mo, Ni-40Ti-10Mo and Ni-46Ti-2Mo-2Zr powders milled for 1h. The NiTi compound dissolved small Mo amounts lower than 4 at%, which were measured by EDS analysis. Moreover, it was identified the existence of an unknown Mo-rich phase in microstructures of the hot-pressed Ni-Ti-Mo alloys.
Resumo:
This conclusion thesis has the objective of produce substrates of Silicon Carbide from the powder of SiC for aerospace use. The powder of SiC was pressed in cylindrical form by the process called “wet way”. For the inicial pressing process was used a uniaxial squeezer and after that was used a isostatic squeezer, after that the samples were synthesized. The next step was the machining and polishing to improve the features of the surface of the sample. Then the roughness was measured, as also the Arquimedes method and optical microscopy and scanning eletron microscopy. Some innovations were done, in one of the lots little vacancys were done with organic material or silicon to reduce the weight of the sample; and the other innovation were the use of a slip film of SiC on the surface of the sample, that were after synthesized with LASER to reduce the roughness, in this samples the roughness were reduce in 50 % if compared with the other samples
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
After sintering advanced ceramics, there are invariably distortions, caused in large part by the heterogeneous distribution of density gradients along the compacted piece. To correct distortions, machining is generally used to manufacture pieces within dimensional and geometric tolerances. Hence, narrow material removal limit conditions are applied, which minimize the generation of damage. Another alternative is machining the compacted piece before sintering, called the green ceramic stage, which allows machining without damage to mechanical strength. Since the greatest concentration of density gradients is located in the outer-most layers of the compacted piece, this study investigated the removal of different allowance values by means of green machining. The output variables are distortion after sintering, tool wear, cutting force, and the surface roughness of the green ceramics and the sintered ones. The following results have been noted: less distortion is verified in the sintered piece after 1mm allowance removal; and the higher the tool wear the worse the surface roughness of both green and sintered pieces.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work discusses on the structural evaluation of mechanically alloyed and heat-treated Ti-25at%Si powders. The milling process was conducted in a planetary ball mill using stainless steel balls/vials, 200 rpm and ball-to-powder weight ratio of 5:1, whereas the heat treatment was conducted under Ar atmosphere at 1100 C for 4 h. Samples were characterized by X-ray diffraction, differential scanning calorimetry, scanning electron microscopy and energy dispersive spectrometry. The Si peaks disappeared after milling for 30h, indicating that the Si atoms were dissolved into the Ti lattice in order to form an extended solid solution. The Ti peaks were broadened and their intensities reduced for longer milling times whereas a halo was formed in Ti-25Si powders milled for 200h suggesting that an amorphous structure was achieved. The crystallite size was decreased with increasing milling times. A large Ti3Si amount was found in mechanically alloyed Ti-25at%Si powders after heating at 1100 degrees C for 4h.
Resumo:
The aim of this work was to investigate the effect of previous treatments at high pressures on the crystallization kinetics of monolithic samples of a Li2O-2SiO(2) (LS2) glass. The glass transition temperature (T-g) and the temperature of the onset of crystallization (T-p) obtained by differential thermal analyses (DTA) were measured for LS2 glass samples submitted to isostatic pressures ranging from 2.5 to 7.7 GPa during 5 min at room temperature. The observed systematic changes in T-g and T-p were probably related to the cracks induced by high pressure inside the monolithic samples and in its surface. Away from the cracks, the nucleation density slightly decreased as a function of pressure but along the cracks, the nucleation density was significantly higher. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The present work reports on the structural evaluation of mechanically alloyed Ti-xZr-22Si-11B (x = 5, 7, 10, 15 and 20 at-%) powders. Milled powders and hot-pressed alloys were characterized by X-ray diffraction, electron scanning microscopy, and electron dispersive spectrometry. The Si and B atoms were preferentially dissolved into the Ti and Zr lattices during ball milling of Ti-xZr-22Si-11B (x = 7, 10, 15 and 20 at-%) powders, and extended solid solutions were achieved. The displacement of Ti peaks was more pronounced to the direction of lower diffraction angles with increasing Zr amounts in mechanically alloyed Ti-Zr-Si-B powders, indicating that the Zr atoms were also dissolved into the Ti lattice.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Electrically conductive poly(vinylidene fluoride)(PVDF) - polyaniline blends of different composition were synthesized by chemical polymerization of aniline in a mixture of PVDF and dimethylformamide (DMF) and studied by electrical conductivity measurement, UV-Vis-NIR and FTIR spectroscopy. The samples were obtained as flexible films by pressing the powder at 180 degrees C for 5 min. The electrical conductivity showed a great dependence on the syntheses parameters. The higher value of the electrical conductivity was obtained for the oxidant/aniline molar ratio equal to 1 and p-toluenesulfonic acid-TSA/aniline ratio between 3 and 6. UV-Vis-NIR and FTIR spectra of the blend are similar to the doped PANI, indicating that the PANI is responsible for the high electrical conductivity of the blend. The electrical conductivity of blend proved to be stable as a function of temperature decreasing about one order at temperature of 100 degrees C. The route used to obtain the polymer blend showed to be a suitable alternative in order to obtain PVDF/PANI-TSA blends with high electrical conductivity. (c) 2006 Elsevier Ltd. All rights reserved.