21 resultados para Ion beam analysis
Resumo:
The present study evaluated by cone-beam computed tomography (CBCT) the apical canal transportation and centralizing ability of different automated systems after root canal preparation. The mesiobuccal canals of maxillary first molars (n=10 per group) were prepared with: GI - reciprocating system with K-Flexofile; GII - reciprocating system with NiTiFlex files; GIII - rotary system with K3 instruments; GIV - rotary system with RaCe instruments. CBCT scans were taken before and after biomechanical preparation up to a #40.02 diameter. Canal transportation was determined by measuring the smallest distance between the inner canal walls and the mesial and distal sides of the root. The centralization ability corresponded to the difference between the measurements from transportation evaluation, using the linear voxel to voxel method of analysis. The mean transportation was 0.06 ± 0.14 mm, with a tendency to deviate to the mesial side of the root (n=22), with no statistically significant difference among the groups (p=0.4153). The mean centralization index was 0.15 ± 0.65 also without statistically significant difference among the groups (p=0.0881). It may be concluded that apical canal transportation and centralization ability were not influenced by the type of mechanical movement and instruments used.
Resumo:
The present study investigates the chemical composition of the African plant Parkia biglobosa (Fabaceae) roots and barks by Liquid Chromatography - Electrospray Ionization and Direct Injection Tandem Mass Spectrometry analysis. Mass spectral data indicated that B-type oligomers are present, namely procyanidins and prodelphinidins, with their gallate and glucuronide derivatives, some of them in different isomeric forms. The analysis evidenced the presence of up to 40 proanthocyanidins, some of which are reported for the first time. In this study, the antiradical activity of extracts of roots and barks from Parkia biglobosa was evaluated using DPPH method and they showed satisfactory activities.
Resumo:
Purpose: In vivo bone response was assessed by removal torque, hystological and histometrical analysis on a recently developed biomedical Ti-15Mo alloy, after surface modification by laser beam irradiation, installed in the tibia of rabbits. Materials and Methods: A total of 32 wide cylindrical Ti-15Mo dental implants were obtained (10mm × 3.75mm). The implants were divided into two groups: 1) control samples (Machined surface - MS) and 2) implants with their surface modified by Laser beam-irradiation (Test samples - LS). Six implants of each surface were used for removal torque test and 10 of each surface for histological and histometrical analysis. The implants were placed in the tibial metaphyses of rabbits. Results: Average removal torque was 51.5Ncm to MS and >90Ncm to LS. Bone-to-implant-contact percentage was significantly higher for LS implants both in the cortical and marrow regions. Conclusions: The present study demonstrated that laser treated Ti-15Mo alloys are promising materials for biomedical application. © 2011 Wiley Periodicals, Inc.
Resumo:
Objectives: The purpose of this study was to evaluate the surfaces of commercially pure titanium (cp Ti) implants modified by laser beam (LS), without and with hydroxyapatite deposition by the biomimetic method (HAB), without (HAB) and with thermal treatment (HABT), and compare them with implants with surfaces modified by acid treatment (AS) and with machined surfaces (MS), employing topographical and biomechanics analysis. Methods: Forty-five rabbits received 75 implants. After 30, 60, and 90 days, the implants were removed by reverse torque and the surfaces were topographically analyzed. Results: At 30 days, statistically significant difference (P < 0.05) was observed among all the surfaces and the MS, between HAB/HABT and AS and between HAB and LS. At 60 days, the reverse torque of LS, HAB, HABT, and AS differed significantly from MS. At 90 days, difference was observed between HAB and MS. The microtopographic analysis revealed statistical difference between the roughness of LS, HAB, and HABT when compared with AS and MS. Conclusions: It was concluded that the implants LS, HAB, and HABT presented physicochemical and topographical properties superior to those of AS and MS and favored the osseointegration process in the shorter periods. In addition, HAB showed the best results when compared with other surfaces. © 2012 John Wiley & Sons A/S.
Resumo:
An excitation force that is not influenced by the system state is said to be an ideal energy source. In real situations, a direct and feedback coupling between the excitation source and the system must always exist at a certain level. This manifestation of the law of conservation of energy is known as the Sommerfeld effect. In the case of obtaining a mathematical model for such a system, additional equations are usually necessary to describe the vibration sources with limited power and its coupling with the mechanical system. In this work, a cantilever beam and a non-ideal DC motor fixed to its free end are analyzed. The motor has an unbalanced mass that provides excitation to the system which is proportional to the current applied to the motor. During the coast up operation of the motor, if the drive power is increased slowly, making the excitation frequency pass through the first natural frequency of the beam, the DC motor speed will remain the same until it suddenly jumps to a much higher value (simultaneously its amplitude jumps to a much lower value) upon exceeding a critical input power. It was found that the Sommerfeld effect depends on some system parameters and the motor operational procedures. These parameters are explored to avoid the resonance capture in the Sommerfeld effect. Numerical simulations and experimental tests are used to help gather insight of this dynamic behavior. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
This clinical study was conducted to correlate the levels of endotoxins and bacterial counts found in primary endodontic infection with the volume of periapical bone destruction determined by cone-beam computed tomography (CBCT) analysis. Moreover, the levels of bacteria and endotoxins were correlated with the development of clinical features. Twenty-four root canals with primary endodontic disease and apical periodontitis were selected. Clinical features such as pain on palpation, pain on percussion, and previous episode of pain were recorded. The volume (cubic millimeters) of periapical bone destruction was determined by CBCT analysis. Endotoxins and bacterial samplings were collected by using sterile/apyrogenic paper points. Endotoxins were quantified by using limulus amebocyte lysate assay (KQCL test), and bacterial count (colony-forming units [CFU]/mL) was determined by using anaerobic culture techniques. Data were analyzed by Pearson correlation and multiple logistic regression (P < .05). Endotoxins and bacteria were detected in 100% of the root canal samples (24 of 24), with median values of 10.92 endotoxin units (EU)/mL (1.75-128 EU/mL) and 7.5 × 10(5) CFU/mL (3.20 × 10(5)-8.16 × 10(6) CFU/mL), respectively. The median volume of bone destruction determined by CBCT analysis was 100 mm(3) (10-450 mm(3)). The multiple regression analysis revealed a positive correlation between higher levels of endotoxins present in root canal infection and larger volume of bone destruction (P < .05). Moreover, higher levels of endotoxins were also correlated with the presence of previous pain (P < .05). Our findings revealed that the levels of endotoxins found in root canal infection are related to the volume of periapical bone destruction determined by CBCT analysis. Moreover, the levels of endotoxin are related to the presence of previous pain.