48 resultados para Invariant integrals


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some dynamic properties for a light ray suffering specular reflections inside a periodically corrugated waveguide are studied. The dynamics of the model is described in terms of a two dimensional nonlinear area preserving map. We show that the phase space is mixed in the sense that there are KAM islands surrounded by a large chaotic sea that is confined by two invariant spanning curves. We have used a connection with the Standard Mapping near a transition from local to global chaos and found the position of these two invariant spanning curves limiting the size of the chaotic sea as function of the control parameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Making sure that causality be preserved by means of ''covariantizing'' the gauge-dependent singularity in the propagator of the vector potential A(mu)(x), we show that the evaluation of some basic one-loop light-cone integrals reproduce those results obtained through the Mandelstam-Leibbrandt prescription. Moreover, such a covariantization has the advantage of leading to simpler integrals to be performed in the cone variables (the bonus), although, of course, it introduces an additional alpha-parameter integral to be performed (the price to pay).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A quantum deformed theory applicable to all shape-invariant bound-state systems is introduced by defining q-deformed ladder operators. We show that these new ladder operators satisfy new q-deformed commutation relations. In this context we construct an alternative q-deformed model that preserves the shape-invariance property presented by the primary system. q-deformed generalizations of Morse, Scarf and Coulomb potentials are given as examples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We define a cohomological invariant E(G, S, M) where G is a group, S is a non empty family of (not necessarily distinct) subgroups of infinite index in G and M is a F2G-module (F2 is the field of two elements). In this paper we are interested in the special case where the family of subgroups consists of just one subgroup, and M is the F2G-module F2(G/S). The invariant E(G, {S}, F2(G/S)) will be denoted by E(G, S). We study the relations of this invariant with other ends e(G) , e(G, S) and e(G, S), and some results are obtained in the case where G and S have certain properties of duality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ladder operators can be constructed for all potentials that present the integrability condition known as shape invariance, satisfied by most of the exactly solvable potentials. Using the superalgebra of supersymmetric quantum mechanics, we construct the ladder operators for two exactly solvable potentials that present a subtle hidden shape invariance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exact reflection and transmission coefficients for supersymmetric shape-invariant potentials barriers are calculated by an analytical continuation of the asymptotic wavefunctions obtained via the introduction of new generalized ladder operators. The general form of the wavefunction is obtained by the use of the F(-infinity, +infinity)-matrix formalism of Froman and Froman which is related to the evolution of asymptotic wavefunction coefficients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A class of shape-invariant bound-state problems which represent transitions in a two-level system introduced earlier are generalized to include arbitrary energy splittings between the two levels as well as intensity-dependent interactions. We show that the coupled-channel Hamiltonians obtained correspond to the generalizations of the nonresonant and intensity-dependent Jaynes-Cummings Hamiltonians, widely used in quantized theories of lasers. In this general context, we determine the eigenstates, eigenvalues, the time evolution matrix and the population inversion matrix factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The negative-dimensional integration method (NDIM) seems to be a very promising technique for evaluating massless and/or massive Feynman diagrams. It is unique in the sense that the method gives solutions in different regions of external momenta simultaneously. Moreover, it is a technique whereby the difficulties associated with performing parametric integrals in the standard approach are transferred to a simpler solving of a system of linear algebraic equations, thanks to the polynomial character of the relevant integrands. We employ this method to evaluate a scalar integral for a massless two-loop three-point vertex with all the external legs off-shell, and consider several special cases for it, yielding results, even for distinct simpler diagrams. We also consider the possibility of NDIM in non-covariant gauges such as the light-cone gauge and do some illustrative calculations, showing that for one-degree violation of covariance (i.e. one external, gauge-breaking, light-like vector n μ) the ensuing results are concordant with the ones obtained via either the usual dimensional regularization technique, or the use of the principal value prescription for the gauge-dependent pole, while for two-degree violation of covariance - i.e. two external, light-like vectors n μ, the gauge-breaking one, and (its dual) n * μ - the ensuing results are concordant with the ones obtained via causal constraints or the use of the so-called generalized Mandelstam-Leibbrandt prescription. © 1999 Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The negative-dimensional integration method (NDIM) is revealing itself as a very useful technique for computing massless and/or massive Feynman integrals, covariant and noncovanant alike. Up until now however, the illustrative calculations done using such method have been mostly covariant scalar integrals/without numerator factors. We show here how those integrals with tensorial structures also can be handled straightforwardly and easily. However, contrary to the absence of significant features in the usual approach, here the NDIM also allows us to come across surprising unsuspected bonuses. Toward this end, we present two alternative ways of working out the integrals and illustrate them by taking the easiest Feynman integrals in this category that emerge in the computation of a standard one-loop self-energy diagram. One of the novel and heretofore unsuspected bonuses is that there are degeneracies in the way one can express the final result for the referred Feynman integral.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a paper presented a few years ago, de Lorenci et al. showed, in the context of canonical quantum cosmology, a model which allowed space topology changes. The purpose of this present work is to go a step further in that model, by performing some calculations only estimated there for several compact manifolds of constant negative curvature, such as the Weeks and Thurston spaces and the icosahedral hyperbolic space (Best space). ©2000 The American Physical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perturbative quantum gauge field theory as seen within the perspective of physical gauge choices such as the light-cone gauge entails the emergence of troublesome poles of the type (k · n)-α in the Feynman integrals. These come from the boson field propagator, where α = 1, 2, ⋯ and nμ is the external arbitrary four-vector that defines the gauge proper. This becomes an additional hurdle in the computation of Feynman diagrams, since any graph containing internal boson lines will inevitably produce integrands with denominators bearing the characteristic gauge-fixing factor. How one deals with them has been the subject of research over decades, and several prescriptions have been suggested and tried in the course of time, with failures and successes. However, a more recent development at this fronteer which applies the negative dimensional technique to compute light-cone Feynman integrals shows that we can altogether dispense with prescriptions to perform the calculations. An additional bonus comes to us attached to this new technique, in that not only it renders the light-cone prescriptionless but, by the very nature of it, it can also dispense with decomposition formulas or partial fractioning tricks used in the standard approach to separate pole products of the type (k · n)-α[(k - p) · n]-β (β = 1, 2, ⋯). In this work we demonstrate how all this can be done.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We apply the negative dimensional integration method (NDIM) to three outstanding gauges: Feynman, light-cone, and Coulomb gauges. Our aim is to show that NDIM is a very suitable technique to deal with loop integrals, regardless of which gauge choice that originated them. In the Feynman gauge we perform scalar two-loop four-point massless integrals; in the light-cone gauge we calculate scalar two-loop integrals contributing to two-point functions without any kind of prescriptions, since NDIM can abandon such devices - this calculation is the first test of our prescriptionless method beyond one-loop order; and finally, for the Coulomb gauge we consider a four-propagator massless loop integral, in the split-dimensional regularization context. © 2001 Academic Press.