19 resultados para Integer optimization


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a mixed-integer linear programming approach to solving the problem of optimal type, size and allocation of distributed generators (DGs) in radial distribution systems. In the proposed formulation, (a) the steady-state operation of the radial distribution system, considering different load levels, is modeled through linear expressions; (b) different types of DGs are represented by their capability curves; (c) the short-circuit current capacity of the circuits is modeled through linear expressions; and (d) different topologies of the radial distribution system are considered. The objective function minimizes the annualized investment and operation costs. The use of a mixed-integer linear formulation guarantees convergence to optimality using existing optimization software. The results of one test system are presented in order to show the accuracy as well as the efficiency of the proposed solution technique.© 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, a novel approach for the optimal location and contract pricing of distributed generation (DG) is presented. Such an approach is designed for a market environment in which the distribution company (DisCo) can buy energy either from the wholesale energy market or from the DG units within its network. The location and contract pricing of DG is determined by the interaction between the DisCo and the owner of the distributed generators. The DisCo intends to minimise the payments incurred in meeting the expected demand, whereas the owner of the DG intends to maximise the profits obtained from the energy sold to the DisCo. This two-agent relationship is modelled in a bilevel scheme. The upper-level optimisation is for determining the allocation and contract prices of the DG units, whereas the lower-level optimisation is for modelling the reaction of the DisCo. The bilevel programming problem is turned into an equivalent single-level mixed-integer linear optimisation problem using duality properties, which is then solved using commercially available software. Results show the robustness and efficiency of the proposed model compared with other existing models. As regards to contract pricing, the proposed approach allowed to find better solutions than those reported in previous works. © The Institution of Engineering and Technology 2013.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a mixed-integer quadratically-constrained programming (MIQCP) model to solve the distribution system expansion planning (DSEP) problem. The DSEP model considers the construction/reinforcement of substations, the construction/reconductoring of circuits, the allocation of fixed capacitors banks and the radial topology modification. As the DSEP problem is a very complex mixed-integer non-linear programming problem, it is convenient to reformulate it like a MIQCP problem; it is demonstrated that the proposed formulation represents the steady-state operation of a radial distribution system. The proposed MIQCP model is a convex formulation, which allows to find the optimal solution using optimization solvers. Test systems of 23 and 54 nodes and one real distribution system of 136 nodes were used to show the efficiency of the proposed model in comparison with other DSEP models available in the specialized literature. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a mixed-integer convex-optimization-based approach for optimum investment reactive power sources in transmission systems. Unlike some convex-optimization techniques for the reactive power planning solution, in the proposed approach the taps settings of under-load tap-changing of transformers are modeled as a mixed-integer linear set equations. Are also considered the continuous and discrete variables for the existing and new capacitive and reactive power sources. The problem is solved for three significant demand scenarios (low demand, average demand and peak demand). Numerical results are presented for the CIGRE-32 electric power system.