141 resultados para Infrared thermal imaging
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Foram sintetizados compostos Ln-L no estado sólido, onde Ln significa os lantanídeos leves trivalentes e L é o piruvato. Estes compostos foram caracterizados e estudados utilizando-se a Termogravimetria e Termogravimetria derivada (TG/DTG), calorimetria exploratória diferencial (DSC) difratometria de raios X pelo método do pó, espectroscopia na região do infravermelho, análise elementar e complexometria. Os resultados permitiram obter informações com respeito a composição, desidratação, sitio de coordenação, comportamento térmico e a decomposição térmica destes compotos.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Solid-state compounds of general formula Ln(2)L(3)center dot nH(2)O, where L represents 1,4-bis(3-carboxy-3-oxo-prop-1-enyl)benzene and Ln = La, Ce, Pr, Nd, Sm, were synthesized. Complexometric titrations with EDTA, thermogravimetry (TG), differential thermal analysis (DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, elemental analysis and infrared spectroscopy have been employed to characterize and to study the thermal behavior of these compounds in dynamic air atmosphere. The results led to information about the composition, dehydration, crystallinity, and thermal decomposition of the synthesized compounds.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cellulose nanowhiskers were prepared by sulfuric acid hydrolysis from coconut husk fibers which had previously been submitted to a delignification process. The effects of preparation conditions on the thermal and morphological behavior of the nanocrystals were investigated. Cellulose nanowhisker suspensions were characterized by Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), thermogravimetric analysis (TGA) and X-ray diffraction. Results showed that it was possible to obtain ultrathin cellulose nanowhiskers with diameters as low as 5 nm and aspect ratio of up to 60. A possible correlation between preparation conditions and particle size was not observed. Higher residual lignin content was found to increase thermal stability indicating that by controlling reaction conditions one can tailor the thermal properties of the nanowhiskers. Published by Elsevier Ltd.
Resumo:
The aim of this in vitro study was to evaluate the influence of pit and fissure sealants on fluorescence readings using lasers. We selected 166 permanent molars and randomly divided them into 4 groups which were each treated with a different sealant (a commercially available clear sealant, 2 opaque sealants and an experimental nanofilled clear sealant). The teeth were independently measured twice by 2 experienced dentists using conventional laser fluorescence (LF) and a laser fluorescence pen device (LFpen), before and after sealing, and again after thermocycling to simulate the thermal stressing between the tooth and the dental materials. Friedman test showed no statistically significant changes using LF and LFpen for the commercial clear sealant group, although values tended to increase after sealing. However, the values increased significantly after thermocycling. There was a statistically significant decrease in fluorescence after application of opaque sealants. After application of the experimental nanofilled clear sealant, LF values increased only after thermocycling, whereas the LFpen values increased after sealing and after thermocycling as well. The intraclass correlation coefficient ranged from 0.87 to 0.96 for interexaminer and 0.82 to 0.94 for intraexaminer reproducibility. It was shown that pit and fissure sealants influence LF and LFpen readings, with the values increasing or decreasing according to the material used. In conclusion, both laser fluorescence devices could be useful as an adjunct to detect occlusal caries under unfilled clear sealants. Nevertheless, surfaces sealed with clear nanofilled material could be assessed using only the LF device. Copyright (C) 2008 S. Karger AG, Basel.
Resumo:
Objective: Our goal was to investigate the surface temperature variations in the cervical region via infrared thermography, as well as the temperature within the pulp chamber via thermocouples, of mandibular incisors when subjected to dental bleaching using two different 35% hydrogen peroxide gels, red (HP) and green (HPM), when activated by halogen light (HL) and LED light.Background Data: Temperatures increases of more than 5.5 degrees C are considered to be potentially threatening to pulp vitality, while those higher than 10 degrees C can result in periodontal injury.Materials and Methods: Tooth samples were randomly divided into four groups (n = 10 each), according to the bleaching agent and catalyst light source used.Results: Mean values and standard deviations of the temperature increases inside the pulp chamber in the HL groups were 4.4 degrees +/- 2.1 degrees C with HP, and 4.5 degrees +/- 1.2 degrees C with HPM; whereas in the groups using LED light, they were 1.4 degrees +/- 0.3 degrees C for HP, and 1.5 degrees +/- 0.2 degrees C for HPM. For the root surfaces, the maximum temperature increases in the groups irradiated with HL were 6.5 degrees +/- 1.5 degrees C for HP, and 7.5 degrees +/- 1.1 degrees C with HPM; whereas in the groups irradiated with LED light, they were 2.8 degrees +/- 0.7 degrees C with HP, and 3 degrees +/- 0.8 degrees C with HPM. There were no statistically significant differences in pulp and surface temperature increases between the groups using different gels, although the mean temperature increases were significantly higher for the groups irradiated with HL when compared with those irradiated with the LED light (p < 0.05 with Tukey's test).Conclusion: LED light may be safe for periodontal and pulp tissue when using this method, but HL should be used with care.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Synthesis of silver nanoparticles by thermal treatment of a silver-aspartarne complex under inert atmosphere is described. Spherical metallic silver naroparticles with average diameter of 5 +/-2 nm were obtained by thermal treatment of the complex [Ag(C14H17N2O5)] 1/2H(2)O at 185 degrees C. Thermogravimetric and infrared analysis of the product show the occurrence of an ester bond cleavage of the aspartame ligand followed by rearrangement and release of a molecule of formaldehyde (H2CO), which is transformed in two strong reducing molecules, H-2 and CO. For silver reduction, the presence of the formaldehyde molecules seems to be the key process for the metallic nanoparticles fort-nation. The maintenance of the ligand crystalline structure, with the exception of the ester group loss, was noted as essential for nanoparticles formation and size control. The ligand crystalline structure was completely lost at 200 degrees C and particle growth and coalescence were observed above 250 degrees C. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)