40 resultados para Incubators
Resumo:
O texto traz uma reflexão sobre o papel das incubadoras de empresas no apoio a práticas ambientais por micro e pequenas empresas. Reconhecendo as debilidades estruturais das empresas de pequeno porte e as dificuldades para a realização de investimentos ambientais, defende o uso de incubadoras como instrumento de política pública para estimular investimentos ambientais. Identifica um número restrito de incubadoras de tecnologias ambientais, em plano internacional. Relata os resultados de uma pesquisa que avaliou a aplicabilidade de um indicador para apurar o desempenho ambiental de incubadoras. Destacaram-se dois resultados: a) a baixa importância atribuída, pelas incubadoras (e pelas empresas abrigadas) ao desempenho ambiental; e b) a ausência de estímulos, pelas incubadoras, aos investimentos ambientais. Desse último resultado deriva importante conclusão: a de que, uma vez apurados os padrões insatisfatórios de desempenho ambiental, de incubadoras e empresas assistidas, ficariam criadas as condições para a formulação e a implementação de medidas indutoras de novas posturas.
Resumo:
This study evaluated the expression of heat shock protein 70 kD (hsp70) in broiler chicken embryos subjected to cold (Experiment 1) or high incubation temperature (Experiment 11). In each experiment, fertile eggs were distributed in three incubators kept at 37.8degreesC. At day 13 (D13), D16, and D19 of incubation, the embryos were subjected to acute cold (32degreesC) or heat (40degreesC) for 4-6 hr. Immediately after cold or heat exposure, samples from the liver, heart, breast muscle, brain, and lungs of 40 embryos were taken per age and treatment (control or stressed embryos), A tissue pool from 10 embryos was used as 1 replication. The levels of hsp70 in each tissue sample was quantified by Western blot analysis. The data were analyzed in a 3 x 2 factorial arrangement of treatments with four replications. hsp70 was detected in all embryo tissues, and the brain contained 2- to 5-times more hsp70 protein compared to the other tissues in either cold or heat stressed embryos. hsp70 increases were observed in the heart and breast muscle of cold stressed embryos at D16 and D19, respectively. Heat stressed embryos showed an increase of hsp70 in the heart at D13 and D19, and in the lung at D19 of incubation. Younger embryos had higher hsp70 synthesis than older embryos, irrespective of the type of thermal stressor. The results indicate that the expression of hsp70 in broiler chicken embryos is affected by cold and heat distress, and is tissue- and age-dependent. (C) 2004 Wiley-Liss, Inc.
Resumo:
This study was conducted to assess the effects of incubation temperature (34 C, 36[degree]C and 38[degree]C) and relative humidity (RH, 50% and 60%) on egg weight loss, embryo mortality, hatchability, incubation time and chick weight in eggs from red-winged tinamou. The eggs were placed in incubators that were operated at 34[degree]C, 36[degree]C, or 38[degree]C and 50% or 60% RH (mean wet bulb temperatures of 28[degree]C and 30[degree]C, respectively) from day 1 to hatching. Each treatment had two replicate groups of 30 eggs each. Hatchability varied with incubation temperature and RH and was highest for eggs incubated at 36[degree]C and 60% RH and lowest for eggs incubated at 38[degree]C. Early, intermediate and late embryo mortality were highest at 38[degree]C, 38[degree]C/50% RH, and 50% RH, respectively. Incubation period was longest at 34[degree]C and shortest at 38[degree]C/50% RH. Present results show the highest hatchability of red-winged tinamou eggs after incubation at 36[degree]C and 60% RH; highest embryo sensitivity to high temperature in the early period of incubation (1 to 7 days), to high temperature and low RH in the second period of incubation (8-14 days) and to low RH in the late period of incubation (after 15 days) and shortest incubation period with increasing temperature and RH.
Resumo:
The objective this work is to define an effective method for following the development of immatures of Apis mellifera from metamorphosis to the emergence of the adult, under conditions allowing the application of diverse treatments. The results showed the best method to be when broods with 5th instar larvae and prepupae were maintained in incubators with the temperature and humidity controlled at 34°C and 65 to 70% respectively.
Resumo:
In this study, the aphid Lipaphis erysimi (Kalt) was reared at different temperatures, under laboratory and field conditions, aiming to obtain age-specific life tables. In the laboratory, L. erysimi was fed on kale, Brassica oleracea L. var acephala, and kept in incubators adjusted to 10, 15, 20, 25 and 30°C, 14h photophase and 70±10% RH. The longest mean generation time (T) was observed at 15°C (23.86 days) and the shortest at 30°C (7.18 days), while the smallest net reproductive rate (R0) occurred at 15°C (4.30) and largest one at 25°C (38.29). For the temperatures of 15, 20, 25 and 30°C, the intrinsic rate of natural increase (rm) and the finite rate of increase (λ) were 0.06/1.06, 0.24/1.27, 0.28/1.33 and 0.23/1.25, respectively. The doubling time (DT) at 15, 20, 25 and 30°C were 11.55, 2.80, 2.47, and 3.01 days, respectively. Under field conditions, the net reproductive rate (R0) of L. erysimi was larger in the winter (53.50) than in the summer (40.99), the same being observed for the mean generation time (T), which was 13.85 days in the winter and 7.57 days in the summer. The intrinsic rate of natural increase (rm) and the finite rate of increase (λ) were 0.29/1.34 and 0.40/1.63 for winter and summer, respectively. The doubling time (DT) observed for winter (2.39 days) was larger than the one observed for summer (1.41 days). The temperature affects longevity of L. erysimi and the best parameters of life table of fertility under laboratory conditions are obtained at 25°C. The data obtained in field conditions reinforced this finding. The daily fecundity was higher and longevity was smaller in the summer than in the winter, thus increasing the innate capacity of increasing in number and duplicating the population in a shorter period of time.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC
Resumo:
Pós-graduação em Agronomia (Entomologia Agrícola) - FCAV
Resumo:
Pós-graduação em Zootecnia - FCAV
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Aquicultura - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Zootecnia - FCAV