248 resultados para In vitro ACE inhibitory activity
Resumo:
Purpose: The objective of this study was to evaluate the antimicrobial activity of six toothpastes for infants: 3 fluoride-free experimental toothpastes - cashew-based, mango-based and without plant extract and fluoride compared with 2 commercially fluoride-free toothpastes and 1 fluoridated toothpastes. Methods: Six toothpastes for infants were evaluated in this study: (1) experimental cashew-based toothpaste; (2) experimental mango-based toothpaste; (3) experimental toothpaste without plant extract and fluoride (negative control); (4) First Teeth brand toothpaste; (5) Weleda brand toothpaste; and (6) Tandy brand toothpaste (positive control). The antimicrobial activity was recorded against Streptococcus mutans, Streptococcus sobrinus, Lactobacillus acidophilus, and Candida albicans using the agar plate diffusion test. Results: First Teeth, Weleda, mango-based toothpaste, and toothpaste without plant extract presented no antimicrobial effect against any of the tested micro-organisms. Cashew toothpaste had antimicrobial activity against S mutans, S sobrinus, and L acidophilus, but it showed no antimicrobial activity against C albicans. There was no statistical difference between the inhibition halo of cashew and Tandy toothpastes against S mutans and L acidophilus. Conclusions: Cashew fluoride-free toothpaste had inhibitory activity against Streptococcus mutans and Lactobacillus acidophilus, and these results were similar to those obtained for fluoridated toothpaste.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Two experiments were carried out to evaluate the effect of supplementation with different nitrogenous compounds on the activities of carboxymethil cellulase (CMCase) and glutamate dehydrogenase (GDH). In the first experiment, four treatments were evaluated in vitro: cellulose, cellulose with casein, cellulose with urea, and cellulose with casamino acids. After 6, 12 and 24 hours of incubation, CMCase and GDH activity, pH, and concentrations of ammonia nitrogen (AN) and microbial protein were measured. In the three incubation periods, the concentration of AN was higher when urea was used as a supplemental source of nitrogen. The activity of CMCase was higher with the addition of urea and casamino acids when compared with the control and the casein treatment. Supplementation with casamino acids provided higher GDH activity when compared with the control at 6 hours of incubation. At 12 hours of incubation, the GHD activity was also stimulated by casein. At 24 hours, there was no difference in GHD activity among treatments. In the second experiment, three rumen-fistulated bulls were used for in situ evaluation. Animals were fed Tifton hay (Cynodon sp.) ad libitum. The treatments consisted of control (no supplementation), supplementation with non-protein nitrogenous compounds (urea and ammonium sulphate, 9:1) and supplementation with protein (albumin). In treatments with nitrogenous compound supplementation, 1 g of crude protein/kg of body weight was supplied. The experiment was conducted in a 3 × 3 Latin square design. The measurements were performed at 6, 12 and 24 hours after supplementation. No difference in GDH activity was observed among treatments. The control treatment showed higher CMCase activity when compared with the treatments containing supplemental sources of nitrogen. However, urea supplementation provided higher CMCase activity compared to albumin.
Resumo:
The effect of four extracts from neem seeds (Azadirachta indica) containing 2000, 5000, 9000 and 10,000 ppm of azadirachtin A (AZA), quantified by high-performance liquid chromatography (HPLC) and diluted to 1.25%; 2.5%; 5.0%; 10.0% and 12.8% was verified by in vitro tests with engorged females and larvae of the cattle tick Rhipicephalus micro plus. The results from the bioassays with the engorged females showed that the main toxic effect of the extracts was reduction of the reproductive parameters, with a sharp drop in the number of eggs laid and the hatching rate, mainly when the extracts were diluted to 10.0% and 12.8%. The product effectiveness (PE) calculations for all the solutions tested showed that the AZA solution at 10,000 ppm (N10) was the most effective. However, statistical analysis of the PE data obtained for the proportional AZA concentrations in the different diluted extracts showed significance (P<0.05) of the effects included in the model (extract dilution, principle effect (classificatory) of the assay (extract) and the interaction between the two), indicating significant variations due to the dilution, the test and the interaction between the two factors in the tests with engorged females. For solutions N2, N5, and N9, it was not possible to estimate LC(90) values in the dilution range tested. The lowest LC(50) was observed for extract N5, and although extract N10 was the only extract for which the LC(90) could be estimated within the range tested, the LC(50) was higher than for N5 and N9. These results suggest that substances other than AZA present in the extracts influenced the efficacy, especially up to a certain LC range. In the tests with larvae, no mortality was observed, indicating zero effectiveness of all the extracts tested. The results of the tests with engorged females showed that the neem extracts had acaricide activity, inhibiting egg laying and the larval hatching rate. Complementary studies are necessary to develop new methods to isolate and/or identify other substances besides AZA contained in this plant, to enable using products made from it as acaricides. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Owing to their massive use, Staphylococcus epidermidis has recently developed significant resistance to several antibiotics, and became one of the leading causes of hospital-acquired infections. Current antibiotics are typically ineffective in the eradication of bacteria in biofilm-associated persistent infections. Accordingly, the paucity of effective treatment against cells in this mode of growth is a key factor that potentiates the need for new agents active in the prevention or eradication of biofilms. Daptomycin and linezolid belong to the novel antibiotic therapies that are active against gram-positive cocci. on the other hand, rifampicin has been shown to be one of the most potent, prevalent antibiotics against S. epidermidis biofilms. Therefore, the main aim of this study was to study the susceptibility of S. epidermidis biofilm cells to the two newer antimicrobial agents previously mentioned, and compare the results obtained with the antimicrobial effect of rifampicin, widely used in the prevention/treatment of indwelling medical device infections. To this end the in vitro activities of daptomycin, linezolid, and rifampicin on S. epidermidis biofilms were accessed, using these antibiotics at MIC and peak serum concentrations. The results demonstrated that at MIC concentration, rifampicin was the most effective antibiotic tested. At peak serum concentration, both strains demonstrated similar susceptibility to rifampicin and daptomycin, with colony-forming units (CFUs) reductions of approximately 3-4 log(10), with a slightly lower response to linezolid, which was also more strain dependent. However, considering all the parameters studied, daptomycin was considered the most effective antibiotic tested, demonstrating an excellent in vitro activity against S. epidermidis biofilm cells. In conclusion, this antibiotic can be strongly considered as an acceptable therapeutic option for S. epidermidis biofilm-associated infections and can represent a potential alternative to rifampicin in serious infections where rifampicin resistance becomes prevalent.
Resumo:
The antimicrobial activity, of danofloxacin, a new 4-fluoroquinolone for exclusive use in Veterinary Medicine, was compared in vitro with other seven drugs against 200 strains of Staphylococcus aureus isolated from bovine mastitis. By using the antimicrobial disk diffusion method (Bauer-Kirby), the results showed that the imipenem (100%), trimerhoprim/sulfamethoxazole (98.9%), cefuroxime (97.3%) were the most effective drugs taking into consideration the percentuals of sensitiveness. However, considering the percentuals of the moderately sensitive strains, danofloxacin emerged as the third most active drug. The antimicrobial dilution susceptibility test used to study the minimal inhibitory concentration (MIC) and the minimal bactericidal concentration (MBC) of danofloxacin, characterized its significative antimicrobial activity by showing a close relationship between both concentrations (MIC90%= 18 mu g/ml - MBC90% = 0.23 mu g/ml), as well as a MIC/MBC ratio of 1:1 and 1:2 for most of tested strains.
Resumo:
Salmonella enterica serovar Typhi is the causative agent of typhoid fever in humans, and the use of antibiotics is essential for controlling this infection; however, the excessive use of antibiotics may select resistant strains. Propolis is a honeybee product and its antimicrobial activity has been intensively investigated. Thus, the objective of this study was to investigate a possible synergism between propolis (collected in Brazil and Bulgaria) and antibiotics acting on the ribosome (chloramphenicol, tetracycline and neomycin) against Salmonella Typhi in vitro. The synergism was investigated by using 1/2 and 1/4 of the minimum inhibitory concentration for propolis and these antimicrobial agents, evaluating the number of viable cells according to the incubation time. Brazilian propolis showed a bacteriostatic action against S. Typhi, while Bulgarian propolis showed a bactericidal activity and a synergistic effect with the three antibiotics. Variations in the biological assays might be due to the differences in their chemical compositions. Based on the results, one may conclude that Bulgarian propolis showed an important antibacterial action, as well as a synergistic effect with antibiotics acting on the ribosome, which points out a possible therapeutic strategy evaluating the use of propolis preparations for the treatment of Salmonella Typhi infection.
Resumo:
The chemical interaction between plants is known as allelopathy and it is related to the release of substances into the environment. The present study aimed at the evaluation of the allelopathic activity of the leaves of Leonurus sibiricus against the germination and initial growth of Raphanus sativus, Lactuca sativa, and Lepidium sativum. Chemical analyses showed the presence in the leaves of four major flavonoids (quercetin-3-O-alpha-L-rhamnopyranosyl-(1 > 6)-beta-D-galactopyranoside; rutin; hyperin, and isoquercetrin) and of three minor flavonoidic compounds (genkwanin, 3'-hydroxy genkwanin, and quercetin). Extracts, their chromatographic fractions and pure isolated flavonoids showed different biological activities. A methanol extract of leaves of Leonurus sibiricus caused significant reduction only in the germination of Lactuca sativa, with no effects on the germinative processes of Raphanus sativus and Lepidium sativum. Some chromatographic fractions, containing the flavonoids, showed inhibitory activity on the initial stages of root growth of all tested seeds. The isolated flavonoids, at the higher concentration tested (10(-4) M) seemed to be responsible for the inhibition of the germination, as well as the radical elongation. Among pure compounds, 3'-OH-genkwanin and quercetin showed the stronger antigerminative activity at the concentration of 10(-4) M, whereas the radical elongation was reduced by rutin, isoquercetrin and 3'-OH-genkwanin. All compounds, tested at concentrations ranging between 10(-5) and 10(-7) M, showed stimulatory activities.
Resumo:
The knowledge of flavonoids involved in plant-plant interactions and their mechanisms of action are poor and, moreover, the structural characteristics required for these biological activities are scarcely known. The objective of this work was to study the possible in vitro phytotoxic effects of 27 flavonoids on the germination and early radical growth of Raphanus sativus L. and Lepidium sativum L., with the aim to evaluate the possible structure/activity relationship. Moreover, the antioxidant activity of the same compounds was also evaluated. Generally, in response to various tested flavonoids, germination was only slightly affected, whereas significant differences were observed in the activity of the various tested flavonoids against radical elongation. DPPH test confirms the antioxidant activity of luteolin, quercetin, catechol, morin, and catechin. The biological activity recorded is discussed in relation to the structure of compounds and their capability to interact with cell structures and physiology. No correlation was found between phytotoxic and antioxidant activities.
Bioinformatical and in vitro approaches to essential oil-induced matrix metalloproteinase inhibition
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Anthelmintic resistance is a worldwide concern in small ruminant industry and new plant-derived compounds are being studied for their potential use against gastrointestinal nematodes. Mentha piperita, Cymbopogon martinii and Cymbopogon schoenanthus essential oils were evaluated against developmental stages of trichostrongylids from sheep naturally infected (95% Haemonchus contortus and 5% Trichostrogylus spp.) through the egg hatch assay (EHA), larval development assay (LDA), larval feeding inhibition assay (LFIA), and the larval exsheathment assay (LEA). The major constituent of the essential oils, quantified by gas chromatography for M. piperita oil was menthol (42.5%), while for C. martinii and C. schoenanthus the main component was geraniol (81.4% and 62.5%, respectively). In all in vitro tests C. schoenanthus essential oil had the best activity against ovine trichostrongylids followed by C. martini, while M. piperita presented the least activity. Cymbopogon schoenanthus essential oil had LC(50) value of 0.045 mg/ml in EHA, 0.063 mg/ml in LDA, 0.009 mg/ml in LFIA, and 24.66 mg/ml in LEA. The anthelmintic activity of essential oils followed the same pattern in all in vitro tests, suggesting C. schoenanthus essential oil could be an interesting candidate for nematode control, although in vivo studies are necessary to validate the anthelmintic properties of this oil. (C) 2011 Elsevier B.V. All rights reserved.