66 resultados para INDUCED PLURIPOTENT STEM CELLS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Superparamagnetic iron oxide nanoparticles (SPIONs) are applied in stem cell labeling because of their high magnetic susceptibility as compared with ordinary paramagnetic species, their low toxicity, and their ease of magnetic manipulation. The present work is the study of CD133(+) stem cell labeling by SPIONs coupled to a specific antibody (AC133), resulting in the antigenic labeling of the CD133+ stem cell, and a method was developed for the quantification of the SPION content per cell, necessary for molecular imaging optimization. Flow cytometry analysis established the efficiency of the selection process and helped determine that the CD133 cells selected by chromatographic affinity express the transmembrane glycoprotein CD133. The presence of antibodies coupled to the SPION, expressed in the cell membrane, was observed by transmission electron microscopy. Quantification of the SPION concentration in the marked cells using the ferromagnetic resonance technique resulted in a value of 1.70 x 10 (13) mol iron (9.5 pg) or 7.0 x 10 (6) nanoparticles per cell ( the measurement was carried out in a volume of 2 mu L containing about 6.16 x 10 5 pg iron, equivalent to 4.5 x 10 (11) SPIONs). (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Aim: Nowadays, research on orthopedic and dental implants is focused on titanium alloys for their mechanical properties and corrosion resistance in the human body environment. Another important aspect to be investigated is their surface topography, which is very important to osseointegration. With laser beam irradiation for roughening the implants surface an easier control of the microtopography is achieved, and surface contamination is avoided. The aim of this study was to assess human bone marrow stem cells response to a newly developed titanium alloy, Ti-15Mo, with surface topography modified by laser beam irradiation. Materials and methods: A total of 10 Ti machined disks (control), 10 Ti-15Mo machined disks and 10 Ti-15Mo disks treated by laser beam-irradiation were prepared. To study how Ti-15Mo surface topografy can induce osteoblast differentiation in mesenchymal stem cells, the expression levels of bone related genes and mesenchymal stem cells marker were analyzed, using real time Reverse Transcription-Polymerase Chain Reaction. Results: In Test 1 (comparison between Ti-15Mo machined disks and Ti-machined disks) quantitative real-time RT-PCR showed a significant induction of ALPL, FOSL1 and SPP1, which increase 20% or more. In Test 2 (comparison between Ti-15Mo laser treated disks and Ti-machined disks) all investigated genes were up-regulated. By comparing Test 1 and Test 2 it was detected that COL1A1, COL3A1, FOSL1 and ENG sensibly increased their expression whereas RUNX2, ALPL and SPP1 expression remained substantially unchanged. Conclusion: The present study demonstrated that laser treated Ti-15Mo alloys are promising materials for implants application.
Resumo:
Objectives: The clinical translation of stem cell-based Regenerative Endodontics demands further development of suitable injectable scaffolds. Puramatrix™ is a defined, self-assembling peptide hydrogel which instantaneously polymerizes under normal physiological conditions. Here, we assessed the compatibility of Puramatrix™ with dental pulp stem cell (DPSC) growth and differentiation. Methods: DPSC cells were grown in 0.05-0.25% Puramatrix™. Cell viability was measured colorimetrically using the WST-1 assay. Cell morphology was observed in 3D modeling using confocal microscopy. In addition, we used the human tooth slice model with Puramatrix™ to verify DPSC differentiation into odontoblast-like cells, as measured by expression of DSPP and DMP-1. Results: DPSC survived and proliferated in Puramatrix™ for at least three weeks in culture. Confocal microscopy revealed that cells seeded in Puramatrix™ presented morphological features of healthy cells, and some cells exhibited cytoplasmic elongations. Notably, after 21 days in tooth slices containing Puramatrix™, DPSC cells expressed DMP-1 and DSPP, putative markers of odontoblastic differentiation. Significance: Collectively, these data suggest that self-assembling peptide hydrogels might be useful injectable scaffolds for stem cell-based Regenerative Endodontics. © 2012 Academy of Dental Materials.
Resumo:
In vertebrate species, testosterone seems to inhibit spermatogonial differentiation and proliferation. However, this androgen can also be converted, via aromatase, into estrogen which stimulates spermatogonial differentiation and mitotic activity. During seasonal spermatogenesis of adult bullfrogs Lithobates catesbeianus, primordial germ cells (PGCs) show enhanced testosterone cytoplasm immunoexpression in winter; however, in summer, weak or no testosterone immunolabelling was observed. The aim of this study was to confirm if PGCs express stem cell markers-alkaline phosphatase (AP) activity and GFRα1 (glial-cell-line-derived neurotrophic factor)-and verify whether testosterone is maintained in these cells by androgen receptors (ARs) and/or sex hormone-binding globulin (SHBG) in winter. Furthermore, regarding the possibility that testosterone is converted into estrogen by PGCs in summer, the immunoexpression of estrogen receptor (ER)β was investigated. Bullfrog testes were collected in winter and in summer and were embedded in glycol methacrylate for morphological analyses or in paraffin for the histochemical detection of AP activity. GFRα1, AR, SHBG and ERβ expression were detected by Western blot and immunohistochemical analyses. The expression of AP activity and GFRα1 in the PGCs suggest that these cells are spermatogonial stem cells. In winter, the cytoplasmic immunoexpression of ARs and SHBG in the PGCs indicates that testosterone is maintained by these proteins in these cells. The cytoplasmic immunoexpression of ERβ, in summer, also points to an ER-mediated action of estrogen in PGCs. The results indicate a participation of testosterone and estrogen in the control of the primordial spermatogonia during the seasonal spermatogenesis of L. catesbeianus. © 2012 S. Karger AG, Basel.