42 resultados para INACTIVATED CATION CHANNELS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The structural specificity of alpha-PMTX, a novel peptide toxin derived from wasp venom has been studied on the neuromuscular synapse in the walking leg of the lobster. alpha-PMTX is known to induce repetitive action potentials in the presynaptic axon due to sodium channel inactivation. We synthesized 29 analogs of alpha-PMTX by substituting one or two amino acids and compared threshold concentrations of these mutant toxins for inducing repetitive action potentials. In 13 amino acid residues of alpha-PMTX, Arg-1, Lys-3 and Lys-12 regulate the toxic activity because substitution of these basic amino acid residues with other amino acid residues greatly changed the potency. Determining the structure-activity relationships of PMTXs will help clarifying the molecular mechanism of sodium channel inactivation. (C) 2000 Elsevier B.V. Ireland Ltd. All rights reserved.
Resumo:
The cubic perovskite related material CaCu3Ti4O12 has attracted a great deal of attention due to the high values of the static dielectric constant, of order 104, approximately constant in the temperature range 100-600 K. The substitution of Ca by Cd results in a similar temperature dependence but a static dielectric constant more than one order of magnitude lower. A theoretical electronic structure study is performed on CaCu3Ti4O12 (CCTO) and CdCu3Ti4O12 (CdCTO) using a tight binding with overlap method. Although the calculations are performed in a paramagnetic configuration, excellent agreement with experiment was found for the calculated band gap of CCTO. In spite of the fact that the band structures of both systems look practically the same, a significant difference is found in the calculated bond strength of Ca-O and Cd-O pairs, driven by the presence of Ti, with Ca-O interaction in CCTO loosened with respect to Cd-O interaction in the cadmium compound. It is suggested that O vacancies are more easily formed in CCTO, this being related to the lower electronegativity of Ca as compared to Cd. The formation of oxygen vacancies could be the origin of the difference in the static dielectric constant of the two compounds.
Resumo:
Exact and closed-form expressions for the level crossing rate and average fade duration are presented for the M branch pure selection combining (PSC), equal gain combining (EGC), and maximal ratio combining (MRC) techniques, assuming independent branches in a Nakagami environment. The analytical results are thoroughly validated by reducing the general case to some special cases, for which the solutions are known, and by means of simulation for the more general case. The model developed here is general and can be easily applied to other fading statistics (e.g., Rice).
Resumo:
Pompilidotoxins (PMTXs), derived from the venom of solitary wasp has been known to facilitate synaptic transmission in the lobster neuromuscular junction, and a recent further study from rat trigeminal neurons revealed that the toxin slows Na+ channel inactivation without modifying activation process. Here we report that beta -PMTX modifies rat brain type II Na+ channel alpha -subunit (rBII) expressed in human embryonic kidney cells but fails to act on the rat heart alpha -subunit (rH1) at similar concentrations. We constructed a series of chimeric mutants of rBII and rH1 Na+ channels and compared modification of the steady-state Na+ currents by beta -PMTX. We found that a difference in a single amino acid between Glu-1616 in rBII and Gln-1615 in rH1 at the extracellular loop of D4S3-S4 is crucial for the action of beta -PMTX. PMTXs, which are small peptides with 13 amino acids, would be a potential tool for exploring a new functional moiety of Na+ channels.
Resumo:
Here we describe a new route to synthesize ultrafine rare earth doped and undoped tin oxide particles for catalytic applications. The catalytic behavior observed in SnO2 samples suggests the control of the catalytic activity and the selectivity of the products by the segregation of a layer of a rare earth compound with the increase of the heat-treatment temperature. The ultrafine particles were characterized by means of BET, XPS, TEM, XRD and Rietveld refinement. It was demonstrated that the effects of the dopant on the methanol decomposition reaction and on the H-2 selectivity were correlated with the segregation of a rare earth layer on the tin oxide samples. (C) 2002 Published by Elsevier B.V. B.V.
Resumo:
The effect was investigated of the K+ channel blocker, glibenclamide, on the ability of Crotalus durissus cumanensis venom (CDCM) to promote peripheral antinociception. This was measured by formalin-induced nociception in male Swiss mice. CDCM (200 and 300 mu g/kg) produced an antinociceptive effect during phase 2 in the formalin test. The effect of CDCM (200 mu g/kg) was unaffected by the ATP-sensitive K+ channel blocker glibenclamide (2 mg/kg). These results suggest that CDCM is effective against acute pain. However, the ATP-sensitive K+ channels pathway is not contributable to the antinoeiceptive mechanism of CDCM.
Resumo:
Islet Neogenesis Associated Protein (INGAP) increases pancreatic beta-cell mass and potentiates glucose-induced insulin secretion. Here, we investigated the effects of the pentadecapeptide INGAP-PP in adult cultured rat islets upon the expression of proteins constitutive of the K-ATP(+) channel, Ca2+ handling, and insulin secretion. The islets were cultured in RPMI medium with or without INGAP-PP for four days. Thereafter, gene (RT-PCR) and protein expression (Western blotting) of Foxa2, SUR1 and Kir6.2, cytoplasmic Ca2+ ([Ca2+](i)), static and dynamic insulin secretion, and Rb-86 efflux were measured. INGAP-PP increased the expression levels of Kir6.2, SUR1 and Foxa2 genes, and SUR1 and Foxa2 proteins. INGAP-PP cultured islets released significantly more insulin in response to 40 mM KCl and 100 mu M tolbutamide. INGAP-PP shifted to the left the dose-response curve of insulin secretion to increasing concentrations of glucose (EC50 of 10.0 +/- 0.4 vs. 13.7 +/- 1.5 mM glucose of the controls). It also increased the first phase of insulin secretion elicited by either 22.2 mM glucose or 100 mu M tolbutamide and accelerated the velocity of glucose-induced reduction of Rb-86 efflux in perifused islets. These effects were accompanied by a significant increase in [Ca2+](i) and the maintenance of a considerable degree of [Ca2+](i) oscillations. These results confirm that the enhancing effect of INGAP-PP upon insulin release, elicited by different secretagogues, is due to an improvement of the secretory function in cultured islets. Such improvement is due, at least partly, to an increased K-ATP(+) channel protein expression and/or changing in the kinetic properties of these channels and augmented [Ca2+](i) response. Accordingly, INGAP-PP could potentially be used to maintain the functional integrity of cultured islets and eventually, for the prevention and treatment of diabetes. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The criteria for the occurrence of roll wave phenomenon in the supercritical and turbulent Newtonian and non-Newtonian flows from the engineering point of view was analyzed. Imposing a constant discharge at the upstream of the canal and superposing a small perturbation, it was observed that roll waves can be developed more easily for small wave numbers and for high cohesions. Moreover, from the mathematical model used, it was demonstrated that the numerical viscosity was 10 times the physical viscosity.
Resumo:
Type II Bartter's syndrome is a hereditary hypokalemic renal salt-wasting disorder caused by mutations in the ROMK channel (Kir1.1; Kcnj1), mediating potassium recycling in the thick ascending limb of Henle's loop (TAL) and potassium secretion in the distal tubule and cortical collecting duct (CCT). Newborns with Type II Bartter are transiently hyperkalemic, consistent with loss of ROMK channel function in potassium secretion in distal convoluted tubule and CCT. Yet, these infants rapidly develop persistent hypokalemia owing to increased renal potassium excretion mediated by unknown mechanisms. Here, we used free-flow micropuncture and stationary microperfusion of the late distal tubule to explore the mechanism of renal potassium wasting in the Romk-deficient, Type II Bartter's mouse. We show that potassium absorption in the loop of Henle is reduced in Romk-deficient mice and can account for a significant fraction of renal potassium loss. In addition, we show that iberiotoxin (IBTX)-sensitive, flow-stimulated maxi-K channels account for sustained potassium secretion in the late distal tubule, despite loss of ROMK function. IBTX-sensitive potassium secretion is also increased in high-potassium-adapted wild-type mice. Thus, renal potassium wasting in Type II Bartter is due to both reduced reabsorption in the TAL and K secretion by max-K channels in the late distal tubule. © 2006 International Society of Nephrology.
Resumo:
The objective of this study was to evaluate the toxicity of water which flows toward the beaches of Santos, SP, Brazil. Water samples were collected from eight urban drainage channels and a small creek, in March, April and August 2005. For each sample, some physical-chemical parameters were analyzed: pH, dissolved oxygen, temperature, salinity, presence of free chlorine and total ammonia contents. Acute toxicity tests (48h) with Daphnia similis were also performed with the samples. The level of ammonia was relatively high in the majority of the samples (≥ 1.5 mg/L), and free chlorine was measurable in most of them. Acute toxicity was observed in four water samples (stations 3, 4, 5 and 7), at least in one occasion. The toxicity was positively correlated with the ammonia concentrations and salinity. Because acute toxicity was detected, actions aiming to control the pollution sources and improve the water quality are recommended.
Resumo:
Significant efforts are devoted to developing new ferroelectrets with well-controlled void distributions or uniform voids and with good long-term and thermal stability of the piezoelectricity. Here, we describe the concept, the fabrication, and the most relevant properties of fluoropolymer ferroelectret systems with three separate films of fluoroethylenepropylene (FEP), alternating with two polytetrafluoroethylene (PTFE) templates. The FEP films are selectively fused by means of a lamination process. Two practically identical PTFE templates are used, which have parallel rectangular openings (1.5×30 mm 2) separated by PTFE ridges of 1.5 mm width. After removing the PTFE templates, a three-layer FEP-film sandwich with tubular channels is obtained. We demonstrate that such FEP-film systems exhibit significant and stable piezoelectricity after charging under a high DC voltage. The resulting piezoelectric effect may be further improved by carefully assembling and arranging the PTFE templates during preparation. ©2010 IEEE.
Resumo:
The alternate current biosusceptometry (ACB) is a biomagnetic technique used to study some physiological parameters associated with gastrointestinal (GI) tract. For this purpose it applies an AC magnetic field and measures the response originating from magnetic marks or tracers. This paper presents an equipment based on the ACB which uses anisotropic magnetoresistive (AMR) sensors and an inexpensive electronic support. The ACB-AMR developed consists of a square array of 6x6 sensors arranged in a firstorder gradiometer configuration with one reference sensor. The equipment was applied to capture magnetic images of different phantoms and to acquire gastric contraction activity of healthy rats. The results show a reasonable sensitivity and spatial-temporal resolution, so that it may be applied for imaging of phantoms and signal acquisition of the GI tract of small animals. © 2010 IEEE.