20 resultados para Hydroxyl radical formation
Resumo:
Background: The aim of this study was to compare the rates of local postoperative complications among women undergoing modified radical mastectomy with an electric scalpel (ES) or a harmonic scalpel (HS). It is thought that HS use has less postoperative complications, mainly seroma formation. Methods: This study was a prospective non-randomised clinical trial (NCT01391988) among consecutive patients, performed in parallel. Patients underwent modified radical mastectomy using an HS or ES. We analysed the following operative variables: time, blood loss and seroma volume drainage. Postoperative complications, including seroma, flap necrosis, haematoma and infection were evaluated on the 7th and 14th days. Results: Forty-six patients underwent a MRM with ES and 49 with HS; no differences were observed between the groups. The rate of local complications was 29% in the HS group and 52% in the ES group (p=0.024). The rates of seroma (16.3% versus 28.3%; p=0.161), necrosis (4.1% vs. 21.7%; p=0.013; OR=0.15), haematoma (2.0% vs. 8.7%; p=0.195) and infection (2.0% vs. 6.5%; p=0.351) were lower in the HS group. Adding the findings of all comparative studies using HSs in MRM to the seroma rates in the current study, the seroma rate, expressed as a categorical variable, did not decrease with HS. Seroma was present in 60/219 cases using an HS and in 69/239 cases utilising an ES (p=0.72). Based on a multivariate analysis, HS decreased the risk of skin necrosis (p=0.015). Conclusions: HSs do not decrease the seroma rate. However, this method may be useful in skin sparing mastectomy because it decreases skin flap necrosis. © 2013 Surgical Associates Ltd.
Resumo:
Eumelanin is a ubiquitous pigment in the human body, animals, and plants, with potential for bioelectronic applications because of its unique set of physical and chemical properties, including strong UV-vis absorption, mixed ionic/electronic conduction, free radical scavenging and anti-oxidant properties. Herein, a detailed investigation is reported of eumelanin thin films grown on substrates patterned with gold electrodes as a model system for device integration, using electrical measurements, atomic force microscopy, scanning electron microscopy, fluorescence microscopy, and time-of-flight secondary ion mass spectroscopy. Under prolonged electrical biasing in humid air, one can observe gold dissolution and formation of gold-eumelanin nanoaggregates, the assembly of which leads to the formation of dendrites forming conductive pathways between the electrodes. Based on results collected with eumelanins from different sources, a mechanism is proposed for the formation of the nanoaggregates and dendrites, taking into account the metal binding properties of eumelanin. The surprising interaction between eumelanin and gold points to new opportunities for the fabrication of eumelanin-gold nanostructures and biocompatible memory devices and should be taken into account in the design of devices based on eumelanin thin films. © 2013 WILEY-VCH Verlag GmbH & Co.
Resumo:
Pós-graduação em Bases Gerais da Cirurgia - FMB
Resumo:
trans,trans-2,4-Decadienal (DDE) is an important breakdown product of lipid peroxidation. This aldehyde is cytotoxic to mammalian cells and is known to be implicated in DNA damage. Therefore, attempts were made in this work to assess the reactivity of DDE with 2'-deoxyadenosine (dAdo). It was shown that DDE is able to bind to 2'-deoxyadenosine, yielding highly fluorescent products. Besides 1,N-6-etheno-2'-deoxyadenosine (epsilon dAdo), two other related adducts, 1-[3-(2-deoxy-beta-D-erythro-pentofuranosyl)3H-imidazo[2,1-i]purin-7-yl]-1,2,3-octanetriol and 1-[3-(2-deoxy-beta-D-erythro-pentofuranosyl)-3H-imidazo[2,1-i]purin-7-yl]-1,2-heptanediol, were isolated by reverse phase high-performance liquid chromatography and characterized on the basis of their UV, fluorescence, nuclear magnetic resonance, and mass spectrometry features. The reaction mechanism for the formation of the DDE-2'-deoxyadenosine adducts involves 2,4-decadienal epoxidation and subsequent addition to the N-2 amino group of 2'-deoxyadenosine, followed by cyclization at the N-1 site. Adducts differ by the length of carbon side chain and the number of hydroxyl groups. The present data indicate that DDE can be epoxidized by peroxides, and the resulting products are able to form several adducts with 2'-deoxyadenosine and/or DNA. Endogenous DNA adduct formation can contribute to the already reported high cytotoxicity of DDE to mammalian cells.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)