47 resultados para Hybrid material


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: This study was intended to quantify the marginal leakage of three glass-ionomer-resin composite hybrid materials and compare it with the leakage exhibited by a glass-ionomer cement and a bonded resin composite system. Method and materials: Standardized Class V cavities were prepared on root surfaces of 105 extracted human teeth, randomly assigned to five groups of 21 each, and restored with either Ketac-Fil Aplicap, Z100/Scotchbond Multi-Purpose Plus, Vitremer, Photac-Fil Aplicap, or Dyract. The teeth were thermally stressed for 500 cycles and stained with methylene blue. The microleakage was quantified spectrophotometrically, and the data were statistically analyzed with Friedman's test. Results: There were no significant differences in microleakage among the five groups. Restorations of all tested materials showed some marginal leakage in Class V cavities. Conclusion: The microleakage performance of glass-ionomer-resin composite hybrid materials was similar to those of a conventional glass-ionomer and a bonded resin composite system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work we proposed a relative humidity (RH) sensor based on a Bragg grating written in an optical fiber, associated with a coating of organo-silica hybrid material prepared by the sol-gel method. The organo-silica-based coating has a strong adhesion to the optical fiber and its expansion is reversibly affected by the change in the RH values (15.0-95.0%) of the surrounding environment, allowing an increased sensitivity (22.2 pm/%RH) and durability due to the presence of a siliceous-based inorganic component. The developed sensor was tested in a real structure health monitoring essay, in which the RH inside two concrete blocks with different porosity values was measured over 1 year. The results demonstrated the potential of the proposed optical sensor in the monitoring of civil engineering structures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coatings are largely used in industries. However the development of new materials with improved properties still feeds a continuous need for performance, cost or endurance, the coatings are obtained by a hybrid material, organic-inorganic, and this polymer is applied on metallic, ceramic and glassy surfaces. The material generated in-situ on the desired surface has a nanometric structure. Results in abrasion loss (according ASTM standards) showed that the coatings improve the abrasion resistance of stainless steel by 30%, and also, diminish oxidization and surface rugosity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: the purpose of this study was to evaluate the effectiveness of various surface treatments for resin-modified glass-ionomer restorative materials by determining dye uptake spectrophotometrically. Method and materials: Two hundred twenty-four specimens, 4.1 mm in diameter and 2.0 mm thick, were made of 3 materials: Vitremer, Fuji II LC, and Photac-Fil Aplicap. Specimens were divided into 15 groups. The positive and negative control specimens remained unprotected, while the experimental specimens were protected with Heliobond light-activated bonding resin, Colorama nail varnish, or surface coatings indicated by the manufacturers of the glass-ionomer materials. Finishing Gloss for Vitremer, Fuji Varnish for Fuji II LC, and Ketac Glaze for Photac-Fil. The disks were immersed in 0.05% methylene blue for 24 hours except for the negative control group, which was immersed in deionized water. After 24 hours, the disks were removed, washed, and individually placed in 1 mL of 65% nitric acid for 24 hours. The solutions were centrifuged and the spectrophotometric absorbance was determined at 606 nm. The dye uptake was expressed in micrograms of dye per milliliter, and the results were analyzed with the Kruskal-Wallis test. Results: There were no differences in dye uptake among the 3 resin-modified glass-ionomer restorative materials, however, all of them required surface protection. Conclusion: the best surface protection for the 3 evaluated materials was obtained with Heliobond light-activated bonding resin.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two groups of hybrid organic-inorganic composites exhibiting ionic conduction properties, so called ORMOLYTES (organically modified electrolytes), have been prepared by the sol-gel process. The first group has been prepared from mixture of a lithium salt and 3-isocyanatopropyltriethoxysilane(IsoTrEOS),O,O′-bis(2-aminopropyl) polypropyleneglycol. These materials produce chemical bonds between the organic (polymer) and the inorganic (silica) phases. The second group has been prepared by an ultrasonic method from a mixture of tetraethoxysilane (TEOS), polypropyleneglycol and a lithium salt. The organic and inorganic phases are not chemically bonded in these samples. The Li+ ionic conductivity, σ, of all these materials has been studied by AC impedance spectroscopy up to 100°C. Values of σ up to 10-6 Ω-1·cm-1 have been found at room temperature. A systematic study of the effects of lithium concentration, polymer chain length and the polymer to silica weight ratio on σ shows that there is a strong dependence of σ on the preparation conditions. The dynamic properties of the Li+ ion and the polymer chains as a function of temperature between -100 and 120°C were studied using 7Li solid-state NMR measurements. The ionic conductivity of both families are compared and particular attention is paid to the nature of the bonds between the organic and inorganic components.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Planar waveguides with low losses in the infrared (from 0.6-1.1 dB/cm) were prepared with sol-gel derived poly(oxyethylene)/siloxane hybrid doped with zirconium(IV) n-propoxide (ZPO) and methacryloxypropyltrimethoxysilane (MAPTMS). The doped nanohybrids were characterized by small angle X-ray scattering, 29Si nuclear magnetic resonance and photoluminescence spectroscopy and compared with the undoped hybrid material. The results indicate an effective interaction between the zirconium particles and the siliceous nanodomains. © 2005 Materials Research Socicty.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Film forming polymeric systems represents a new and unexplored technology of systems forskin or wounds protection and for controlled drug release. The aim of this work was to study the use of polymeric organic-inorganic ureasil-polyether hybrids synthesized by the sol-gel process as film forming system containing silver sulfadiazine as model drug. The film formationtime can be controlled by changing the precursor/catalyst ratio used during the step of hydrolysis and condensations. The results showed that the precursor/catalyst proportion influences both the visual characteristics and time required to form the film. The precursor/catalyst ratio equal to 20.8 m/v was considered ideal due to promote the homogeneous and transparent film formation in less than 5 minutes. The release profile of sulfadiazine is dependent on the characteristics of the matrixes: matrix more hydrophobic as ureasil-POP provided a slowed released mainly due to the low swelling of the matrix. The more hydrophilic ureasil-POE matrix presents a large capacity to swell and favors the faster release of the drug. The set of results showed the possibility of future use of these systems for treating wounds caused by burns.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Química - IQ

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel porous silica matrix has been prepared from Pyrex glass, using hydrothermal treatment under saturated-steam condition. This process makes it possible to obtain, in one step, a silica support formed of a homogeneously distributed and interconnected macropore microstructure. The new matrix contains silanol groups that can be used in reactions of surface modification to provide a hybrid material and a selective macrofiltration membrane, and also it can improve chemical inertness. The porous matrix is noncrystalline as obtained and, after thermal treatment at temperatures higher than 950degreesC, exhibits an X-ray pattern characteristic of alpha-cristobalite and low volume contraction. The present samples were characterized by scanning electron microscopy, mercury intrusion porosimetry, nitrogen adsorption-desorption isotherms, infrared spectroscopy, X-ray powder diffractometry, atomic absorption, and high-resolution solid-state nuclear magnetic resonance. The results present a new way of producing a macroporous silica matrix.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Organic- inorganic hybrid (HOI) are materials prepared with the combination of inorganic and organic components. The properties of a hybrid material are unique, not being the sum of each individual component added. This occurs because there is a synergism that depends of the chemical nature of organic and inorganic components, of the size and morphology of their domains. The sodium carboxymethylcellulose (CMC) it's an anionic polymer obtained of the cellulose, very soluble in water in which forms both solutions themselves and gels. The sodium polyphosphate (NaPO3)n, known commercially as Graham Salt is the only polyphosphate soluble in water, and it's the polyphosphate with the longest chain. At the present work it was prepared and characterized new phosphate organic- inorganic hybrids films of carboxymethylcellulose / sodium phosphate and luminescent films of CMC/NaPO3 doped with europium chloride (EuCl3). The films where prepared in several proportions. At first, it was set the amount of water to be used and the amount of carboxymethylcellulose, changing the concentrations of sodium polyphosphate and europium chloride. After pre-establishing concentrations, for each film, the components were submitted to constant agitation and subsequent drying. The inorganic-organic hybrid films were characterized by, TG, DR-X, DMA, FT-IR, UV-Vis-NIR, RMN 31P e 13C and at last, a study of luminescence was made. The hybrid films obtained are transparent and macroscopically homogeneous, however, the MET measures showed the formation of micro-islands of polyphosphate along the material, this fact indicates a bigger fragmentation of the films and this is verified by DMA analysis which shows a smaller resistance of the film with the increase of the concentration of phosphate. Both spectrum FT-IR and RMN analysis of the films, don't show the formation of new bands of their precursors, CMC e NaPO3,....