53 resultados para Hot filament CVD
Resumo:
The effect of ascorbic acid deficiency was determined in Piaractus mesopotamicus Holmberg, 1887, fish (pacu) under laboratory conditions. A total of 120 fish with an average body weight of 8.64 +/- 1.62 g and measuring 6.15 +/- 0.33 cm in length at the beginning of the experiment were fed diets containing 0, 50, 100 or 200 mg palmitate-coated ascorbic acid/kg dry ration for a period of 24 weeks with measurements every 4 weeks. The experiment was conducted in 20 fiber-cement aquaria of 81-liter capacity. Each aquarium was supplied with dechlorinated water at a flow rate of 1 l/min. Water temperature was measured daily and pH, dissolved oxygen, alkalinity and water conductivity were determined weekly. A fully randomized experimental design was utilized, with 5 replicates of each treatment and 6 fish per aquarium. Ascorbic acid-supplemented fish presented significantly increased growth when compared to unsupplemented fish. Furthermore, unsupplemented fish presented a higher incidence of hyperplasia, hypertrophy and dysplasia of the bone cartilage of gill filaments. The gill lamellae of unsupplemented fish had twisted cartilage and an inflammatory infiltrate at the ends. Anorexia and increased handling stress were also observed in fish fed the unsupplemented diet. The present study suggests that 50 mg ascorbic acid/kg dry ration is sufficient to improve development of pacu fingerlings but the optimum level under aquarium conditions, determined by regression analysis, is 139 mg ascorbic acid/kg dry ration.
Resumo:
This paper presents a new model for the representation of electrodes' filaments of hot-cathode fluorescent lamps, during preheating processes based on the injection of currents with constant root mean square (rms) values. The main improvement obtained with this model is the prediction of the R-h/R-c ratio during the preheating process, as a function of the preheating time and of the rms current injected in the electrodes. Using the proposed model, it is possible to obtain an estimate of the time interval and the current that should be provided by the electronic ballast, in order to ensure a suitable preheating process. is estimate of time and current can be used as input data in the design of electronic ballasts with programmed lamp start, permitting the prediction of the R-h/R-c ratio during the initial steps of the design (theoretical analysis and digital simulation). Therefore, the use of the proposed model permits to reduce the necessity of several empirical adjustments in the prototype, in order to set the operation of electronic ballasts during the preheating process. This fact reduces time and costs associated to the global design procedure of electronic ballasts.
Resumo:
A 9.5/65/35 PLZT ceramic with a Pb-0.905 La-0.095 (Zr-0.65 Ti-0.35)(0.976) O-3 + 35 w% PbO formula was prepared using the Pechini method for powder preparation and two-step sintering in an oxygen atmosphere. Thr first step consisted of sintering at 1200 degrees C for 4 h with slow heating and cooling rates. The second step consisted of hot pressing at 1200 degrees C for 3 h, with slow heating and cooling rates and pressing pressures of 20 MPa (initial pressure) and 40 MPa (at sintering temperature). Investigations were made of the powder phase formation and powder morphology, i.e. The structure of sintered and hot-pressed PLZT ceramics. SEM microstructural analyses were carried out on the sintering and hot-pressing processes. (C) 2000 Elsevier B.V. Ltd and Techna S.r.l. All rights reserved.
Resumo:
This paper presents a study on the influence of milling condition on workpiece surface integrity focusing on hardness and roughness. The experimental work was carried out on a CNC machining center considering roughing and finishing operations. A 25 mm diameter endmill with two cemented carbide inserts coated with TiN layer were used for end milling operation. Low carbon alloyed steel Cr-Mo forged at 1200 degrees C was used as workpiece on the tests. Two kinds of workpiece conditions were considered, i.e. cur cooled after hot forging and normalized at 950 degrees C for 2 h. The results showed that finishing operation was able to significantly decrease the roughness by at least 46% without changing the hardness. on the other hand, roughing operation caused an increase in hardness statistically significant by about 6%. The machined surface presented deformed regions within feed marks, which directly affected the roughness. Surface finish behavior seems to correlate to the chip ratio given the decrease of 25% for roughing condition, which damaged the chip formation. The material removal rate for finishing operation 41% greater than roughing condition demonstrated to be favorable to the heat dissipation and minimized the effect on material hardness.
Resumo:
The performance of 36 models (22 ocean color models and 14 biogeochemical ocean circulation models (BOGCMs)) that estimate depth-integrated marine net primary productivity (NPP) was assessed by comparing their output to in situ (14)C data at the Bermuda Atlantic Time series Study (BATS) and the Hawaii Ocean Time series (HOT) over nearly two decades. Specifically, skill was assessed based on the models' ability to estimate the observed mean, variability, and trends of NPP. At both sites, more than 90% of the models underestimated mean NPP, with the average bias of the BOGCMs being nearly twice that of the ocean color models. However, the difference in overall skill between the best BOGCM and the best ocean color model at each site was not significant. Between 1989 and 2007, in situ NPP at BATS and HOT increased by an average of nearly 2% per year and was positively correlated to the North Pacific Gyre Oscillation index. The majority of ocean color models produced in situ NPP trends that were closer to the observed trends when chlorophyll-alpha was derived from high-performance liquid chromatography (HPLC), rather than fluorometric or SeaWiFS data. However, this was a function of time such that average trend magnitude was more accurately estimated over longer time periods. Among BOGCMs, only two individual models successfully produced an increasing NPP trend (one model at each site). We caution against the use of models to assess multiannual changes in NPP over short time periods. Ocean color model estimates of NPP trends could improve if more high quality HPLC chlorophyll-alpha time series were available.
Resumo:
Thirty-two Polwarth sheep of ages up to 1 year were observed under temperatures varying from 10.5 to 46.5°C. The following blood cell counts were made: erythrocyte (RBC), leucocyte (WBC), eosinophil (EOS), neutrophil (NEU), lymphocyte (LYM) and monocyte (MON). Other traits measured were: haemoglobin (HB), haematocrit (HT), blood glucose (GLU) and serum protein (PROT). Multivariate analysis of variance was used and the results showed a significant (P<0.001) effect for the interaction of shearing and temperature treatment. Under temperatures >25°C, sheep presented a decrease of RBC, WBC, HB and HT, these differences being greater in the shorn than in the unshorn animals. Unshorn animals presented higher variations in EOS, NEU, LYM, MON and GLU. Blood glucose increased under high temperatures in the shorn animals (from 56.36±0.65 mg/100 ml to 60.52±0.69 mg/100 ml) as in the unshorn animals (from 54.72±0.74 mg/100 ml to 57.56±0.77 mg/100 ml). © 1992 International Society of Biometeorology.
Resumo:
Planning hot forging processes is a time-consuming activity with high costs involved because of the trial-and-error iterative methods used to design dies and to choose equipment and process conditions. Some processes demand many months to produce forged parts with controlled shapes, dimensions and microstructure. This paper shows how expert systems can help engineers to reduce the time needed to design precision forged parts and dies from machined parts. The software ADHFD interfacing MS Visual Basic v.5.0 and SolidEdge v.3.0 was used to design flashless hot forged gears, chosen from families of gears. © 1998 Elsevier Science S.A. All rights reserved.
Resumo:
We derive the equation of state for hot nuclear matter using the Walecka model in a non-perturbative formalism. We include here the vacuum polarization effects arising from the nucleon and scalar mesons through a realignment of the vacuum. A ground state structure with baryon-antibaryon condensates yields the results obtained through the relativistic Hartree approximation of summing baryonic tadpole diagrams. Generalization of such a state to include the quantum effects for the scalar meson fields through the σ -meson condensates amounts to summing over a class of multiloop diagrams. The techniques of the thermofield dynamics method are used for the finite-temperature and finite-density calculations. The in-medium nucleon and sigma meson masses are also calculated in a self-consistent manner. We examine the liquid-gas phase transition at low temperatures (≈ 20 MeV), as well as apply the formalism to high temperatures to examine a possible chiral symmetry restoration phase transition.
Resumo:
It was aimed to extend the postharvest conservation of 'Tommy Atkins' mango fruits harvested in break maturity stage. Fruits were submitted at the following treatments: hot water treatment (55°C for 5 minutes) and benomyl 1,000 mg.L-1; irradiation with 0,8 or 1,0 kGy; irradiation associated at carnaúba wax; and control. The fruits were stored at 10°C and 85 - 90%RH during 21 days, and then removed to ambient temperature (25,7±0,7°C and 87,1±2,2%RH). Through the storage time, the evolution of fresh weight, color, rottenness, total soluble solids (TSS), total titratable acidity (TTA), and TSS/TTA ratio were measured. 'Tommy Atkins' mango fruits can have shelf life notably increased, when they were submitted to hot water treatment (55°C for 5 minutes) or γ radiation (0,8 and 1,0 kGy), associated with carnaúba wax application, before cold storage. These treatments increased the fruit resistance at refrigerated storage, and improved shelflife after transferring to ambient temperature.
Resumo:
In this work it was developed a procedure for the determination of vanadium in urine samples by electrothermal atomic absorption spectrometry using successive injections for preconcentration into a preheated graphite tube. Three 60 μL volumes were sequentially injected into the atomizer preheated to a temperature of 110°C. Drying and pyrolysis steps were carried out after each injection. A chemical modifier, barium difluoride (100 mg L-1), and a surfactant, Triton X-100 (0.3% v v-1), were added to the urine sample. When injecting into a hot graphite tube, the sample flow-rate was 0.5 μL s-1. The limits of detection and quantification were 0.54 and 1.82 without preconcentration, and 0.11 and 0.37 μg L-1 with preconcentration, respectively. The accuracy of the procedure was evaluated by an addition-recovery experiment employing urine samples. Recoveries varied from 96.0 to 103% for additions ranging from 0.8 to 3.5 μg L-1 V. The developed procedure allows the determination of vanadium in urine without any sample pretreatment and with minimal dilution of the sample.
Resumo:
The aim of this study was to determine the cutting ability of chemical vapor deposition (CVD) diamond burs coupled to an ultrasonic dental unit handpiece for minimally invasive cavity preparation. One standard cavity was prepared on the mesial and distal surfaces of 40 extracted human third molars either with cylindrical or with spherical CVD burs. The cutting ability was compared regarding type of substrate (enamel and dentin) and direction of handpiece motion. The morphological characteristics, width and depth of the cavities were analyzed and measured using scanning electron micrographs. Statistical analysis using the Kruskal-Wallis test (p < 0.05) revealed that the width and depth of the cavities were significantly greater when they were prepared on dentin. Wider cavities were prepared when the cylindrical CVD bur was used, and deeper cavities resulted from preparation with the spherical CVD bur. The direction of handpiece motion did not influence the size of the cavities, and the CVD burs produced precise and conservative cutting.
Resumo:
In the work described in the present paper, an analytical solution of the general heat conduction equation was employed to assay the temperature profile inside a solid slab which is initially at room temperature and is suddenly plunged into a fluid maintained at a high temperature. The results were then extrapolated to a simulation of a hot modulus of rupture test of typical MgO-graphite refractory samples containing different amounts of graphite in order to evaluate how fast the temperature equilibrates inside the test specimens. Calculations indicated that, depending on the graphite content, the time to full temperature homogenization was in the range of 80 to 200 s. These findings are relevant to the high temperature testing of such refractories in oxidizing conditions in view of the graphite oxidation risks in the proper evaluation of the hot mechanical properties.