22 resultados para Hordeum vulgare L.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de NÃvel Superior (CAPES)
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Pós-graduação em Biociências - FCLAS
Resumo:
Este trabalho teve como objetivo analisar os ductos secretores e o óleo essencial das folhas de Foeniculum vulgare em diferentes épocas do ano. Para esta finalidade, foram realizados estudos de caracterização anatômica, bem como anatomia comparada dos ductos secretores e testes histoquÃmicos das folhas. O óleo essencial foi obtido de folhas e frutos, por hidrodestilação em aparelho de Clevenger e analisados quantitativamente e qualitativamente por cromatografia em fase gasosa acoplada ao espectrômetro de massa, realizando-se análises seguidas de três réplicas para folhas coletadas durante o inverno e primavera, e frutos no verão. Os resultados encontrados para os ductos secretores de óleo corresponderam à redução do teor de óleo essencial nas folhas coletadas no final da primavera. O componente majoritário do óleo essencial de folhas e frutos foi o trans-anetol, durante todas as estações do ano. Portanto, evidenciou-se que os ductos secretores e teor de óleo essencial estão relacionados, bem como os constituintes quÃmicos também estão sujeitos a sazonalidade, conforme o estágio fenológico da planta.
Resumo:
Supercritical fluid extraction (SFE) from solids has proven to be technically feasible for almost any system; nonetheless, its economical viability has been proven for a restricted number of systems. A common practice is to compare the cost of manufacturing of vegetable extracts by a variety of techniques without deeply considering the huge differences in composition and functional properties among the various types of extracts obtained; under this circumstance, the cost of manufacturing do not favor SFE. Additionally, the influence of external parameters such as the agronomic conditions and the SFE system geometry are not considered. In the present work, these factors were studied for the system fennel seeds + CO2. The effects of the harvesting season and the degree of maturation on the global yields for the system fennel seeds + CO2 were analyzed at 300 bar and 40 degrees C. The effects of the pressure on the global yields were determined for the temperatures of 30 and 40 degrees C. Kinetics experiments were done for various ratios of bed height to bed diameter. Fennel extracts were also obtained by hydrodistillation and low-pressure solvent extraction. The chemical composition of the fennel extracts were determined by gas chromatography. The SFE maximum global yield (12.5%, dry basis) was obtained with dry harvested fennel seeds. Anethole and fenchone were the major constituents of the extract; the following fat acids palmitic (C16H32O2), palmitoleic stearic (C18H36O2), oleic (C18H34O2), linoleic (C18H32O2) and linolenic (C18H30O2) were also detected in the extracts. A relation between amounts of feed and solvent, bed height and diameter, and solvent flow rate was proposed. The models of Sovova, Goto et al. and Tan and Lion were capable of describing the mass transfer kinetics. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A flow-injection (FI) method was developed for the determination of oxalate in urine. It was based on the use of oxalate oxidase (E.C. 1.2.3.4) immobilized on ground seeds of the BR-303 Sorghum vulgare variety. A reactor was filled with this activated material, and the samples (200 μL) containing oxalate were passed through it, carried by a deionized water flow. The carbon dioxide produced by the enzyme reaction permeated through a microporous PTFE membrane, and was received in a water acceptor stream, promoting conductivity changes proportional to the oxalate concentration in the sample. The results obtained showed a useful linear range from 0.05 to 0.50 mmol dm-3. The proposed method, when compared with the Sigma enzymatic procedure, showed good correlation (Y = 0.006(±0.016) + 0.98(±0.019)X; r = 0.9995, Y = conductivity in μS, and X = concentration in mmol dm-3), selectivity, and sensitivity. The new immobilization approach promotes greater stability, allowing oxalate determination for 6 months. About 13 determinations can be performed per hour. The precision of the proposed method is about ± 3.2 % (r.s.d).
Resumo:
Pós-graduação em Engenharia e Ciência de Alimentos - IBILCE