49 resultados para Holographic phase shift
Resumo:
The result of few-particle ground-state calculation employing a two-particle nonlocal potential supporting a continuum bound state in addition to a negative-energy bound state has occasionally revealed unusually strong attraction in producing a very strongly bound ground state. In the presence of the continuum bound state the difference of phase shift between zero and infinite energies has an extra jump of pi as in the presence of an additional bound state. The wave function of the continuum bound state is identical with that of a strongly bound negative-energy state, which leads us to postulate a pseudo bound state in the two-particle system in order to explain the unexpected attraction. The role of the Pauli forbidden states is expected to be similar to these pseudo states.
Resumo:
Complex Kohn variational principle is applied to the numerical solution of the fully off-shell Lippmann-Schwinger equation for nucleon-nucleon scattering for various partial waves including the coupled S-3(1), D-3(1), channel. Analytic expressions are obtained for all the integrals in the method for a suitable choice of expansion functions. Calculations with the partial waves S-1(0), P-1(1), D-1(2), and S-3(1)-D-3(1) of the Reid soft core potential show that the method converges faster than other solution schemes not only for the phase shift but also for the off-shell t matrix elements. We also show that it is trivial to modify this variational principle in order to make it suitable for bound-state calculation. The bound-state approach is illustrated for the S-3(1)-D-3(1) channel of the Reid soft-core potential for calculating the deuteron binding, wave function, and the D state asymptotic parameters. (c) 1995 Academic Press, Inc.
Resumo:
An electronic ballast for multiple tubular fluorescent lamp systems is presented. The proposed structure has a high value for the power factor, a dimming capability, and soft switching of the semiconductor devices operated at high frequencies. A zero-current switching pulse width modulated SEPIC converter is used as the rectifying stage and it is controlled using the instantaneous average input current technique. The inverting stage consists of classical resonant half-bridge converter with series-resonant parallel-loaded filters. The dimming control technique is based on varying the switching frequency and monitoring the phase shift of the current drained by the filters and lamps in order to establish a closed loop control. Experimental results are presented that validate the theoretical analysis.
Resumo:
A self-contained discussion of non-relativistic quantum scattering is presented in the case of central potentials in one space dimension, which will facilitate the understanding of the more complex scattering theory in two and three dimensions. The present discussion illustrates in a simple way the concepts of partial-wave decomposition, phase shift, optical theorem and effective-range expansion.
Resumo:
A study was conducted on the interaction of two pulses in the nonlinear Schrodinger (NLS) model. The presence of different scenarios of the behavior depending on the initial parameters of the pulses, such as the pulse areas, the relative phase shift, the spatial and frequency separations were shown. It was observed that a pure real initial condition of the NLS equation can result in additional moving solitons.
Resumo:
This paper presents an improved design methodology for determining the parameters used in the classical Series-Parallel Loaded Resonant (SPLR) filter employed in the switching frequency controlled dimmable electronic ballasts. According to the analysis developed in this paper, it is possible to evaluate some characteristics of the resonant filter during the dimming process, such as: range of switching frequency, phase shift and rms value of the current drained by the resonant filter + fluorescent lamp set.
Resumo:
An electronic ballast for multiple tubular fluorescent lamps is presented in this paper. The proposed structure features high power-factor, dimming capability, and soft-switching to the semiconductor devices operated in high frequencies. A Zero-Current-Switching - Pulse-Width-Modulated (ZCS-PWM) SEPIC converter composes the rectifying stage, controlled by the instantaneous average input current technique, performing soft-commutations and high input power factor. Regarding the inverting stage, it is composed by a classical resonant Half-Bridge converter, associated to Series Parallel-Loaded Resonant (SPLR) filters. The dimming control technique employed in this Half-Bridge inverter is based on the phase-shift in the current processed through the sets of filter + lamp. In addition, experimental results are shown in order to validate the developed analysis.
Resumo:
This paper presents an improved design methodology for the determination of the parameters used in the classical series-resonant parallel-loaded (SRPL) filter employed in the switching frequency controlled dimmable electronic ballasts. According to the analysis developed in this paper, it is possible to evaluate some important characteristics of the resonant filter during the dimming operation, such as: range of switching frequency, phase shift, and rms value of the current drained by the resonant filter + fluorescent lamp set. Experimental results are presented in order to validate the analyses developed in this paper. © 2005 IEEE.
Resumo:
Piezoelectric actuators are widely used in positioning systems which demand high resolution such as scanning microscopy, fast mirror scanners, vibration cancellation, cell manipulation, etc. In this work a piezoelectric flextensional actuator (PFA), designed with the topology optimization method, is experimentally characterized by the measurement of its nanometric displacements using a Michelson interferometer. Because this detection process is non-linear, adequate techniques must be applied to obtain a linear relationship between an output electrical signal and the induced optical phase shift. Ideally, the bias phase shift in the interferometer should remain constant, but in practice it suffers from fading. The J1-J4 spectral analysis method provides a linear and direct measurement of dynamic phase shift in a no-feedback and no-phase bias optical homodyne interferometer. PFA application such as micromanipulation in biotechnology demands fast and precise movements. So, in order to operate with arbitrary control signals the PFA must have frequency bandwidth of several kHz. However as the natural frequencies of the PFA are low, unwanted dynamics of the structure are often a problem, especially for scanning motion, but also if trajectories have to be followed with high velocities, because of the tracking error phenomenon. So the PFA must be designed in such a manner that the first mechanical resonance occurs far beyond this band. Thus it is important to know all the PFA resonance frequencies. In this work the linearity and frequency response of the PFA are evaluated up to 50 kHz using optical interferometry and the J1-J4 method.
Resumo:
We present results on the the influence of changes in the masses and sizes of D mesons and nucleons on elastic DN scattering cross sections and phase shifts in a hadronic medium composed of confined quarks in nucleons. We evaluate the changes of the hadronic masses due to changes of the light constituent quarks at finite baryon density using a chiral quark model based on Coulomb gauge QCD. The model contains a confining Coulomb potential and a transverse hyperfine interaction consistent with a finite gluon propagator in the infrared. We present results for the total cross section and the s-wave phase shift at low energies for isospin I=1-for I=0 and other partial waves the results are similar.
Resumo:
Multipulse rectifier topologies based on auto-connections or differential connections, are more and more applied as interface stages between the mains and power converters. These topologies are becoming increasingly attractive not only for robustness, but to mitigate many low order current harmonics in the utility, reducing the total harmonic distortion of the line currents (THDi) and increasing the power factor requirements. Unlike isolated connections (delta-wye, zigzag, etc.), when the differential transformer is employed, most of the energy required by the load is directly conducted through the windings. Thus, only a small fraction of the kVA is processed by the magnetic core. This feature increases the power density of the converter. This paper presents a mathematical model based on phasor diagrams, which results in a single expression able to merge all differential connections (wye and delta), for both step-up and step-down rectifiers for 12 or 18 pulses. The proposed family of converters can be designed for any relationship between the line input voltage and the DC voltage, unlike the conventional phase-shift voltage connections. An immediate application would be the retrofit, i.e. to replace a conventional rectifier with poor quality of the processed energy by the 12 or 18-pulse rectifiers with Wye or Delta-differential connections, keeping the original values for the input and load voltages. The simple and fast design procedure is developed and tested for a prototype rating 6 kW and 400 V on DC load.
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Pós-graduação em Engenharia Elétrica - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Due to motor difficulties, children with developmental coordination disorder (DCD) doesn't feel motivated to do physical activities, sometimes resulting in a decline of their physical fitness, but it isn't really known for sure the reasons that induct children with DCD to low performances in physical fitness tests, because a lot of tasks that are part of the battery of tests of physical performance are complex in the coordination and/or motor control point of view, like the vertical jump for example. Therefore, the objective of this study was to investigate the factors that induct children with DCD to low performances in physical fitness tests, especially in the vertical jump task. For that, cinematic (duration of the eccentrical phase, duration of the concentrical phase, shift of the mass center and velocity of the mass center), kinetic (potency peak and force peak) and vertical jump performance analysis in two conditions (with the use of arms and without it) were realized in a force platform. The results indicated that children with DCD show a lower performance compared to their peers with typical development (TD), due to a lower potency production