17 resultados para Heat storage


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: This study aimed to evaluate the effect of different storage periods in artificial saliva and thermal cycling on Knoop hardness of 8 commercial brands of resin denture teeth. Methods: Eigth different brands of resin denture teeth were evaluated (Artplus group, Biolux group, Biotone IPN group, Myerson group, SR Orthosit group, Trilux group, Trubyte Biotone group, and Vipi Dent Plus group). Twenty-four teeth of each brand had their occlusal surfaces ground flat and were embedded in autopolymerized acrylic resin. After polishing, the teeth were submitted to different conditions: (1) immersion in distilled water at 37 ± 2 °C for 48 ± 2. h (control); (2) storage in artificial saliva at 37 ± 2 °C for 15, 30 and 60 days, and (3) thermal cycling between 5 and 55 °C with 30-s dwell times for 5000 cycles. Knoop hardness test was performed after each condition. Data were analyzed with two-way ANOVA and Tukey's test (α= .05). Results: In general, SR Orthosit group presented the highest statistically significant Knoop hardness value while Myerson group exhibited the smallest statistically significant mean (P< .05) in the control period, after thermal cycling, and after all storage periods. The Knoop hardness means obtained before thermal cycling procedure (20.34 ± 4.45 KHN) were statistically higher than those reached after thermal cycling (19.77 ± 4.13 KHN). All brands of resin denture teeth were significantly softened after storage period in artificial saliva. Conclusion: Storage in saliva and thermal cycling significantly reduced the Knoop hardness of the resin denture teeth. SR Orthosit denture teeth showed the highest Knoop hardness values regardless the condition tested. © 2010 Japan Prosthodontic Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The spin injector part of spintronic FET and diodes suffers from fatigue due to rising heat on the depletion layer. In this study the stiffness of Ga1-xMnxAs spin injector in terms of storage modulus with respect to a varying temperature, 45 degrees C <= T <= 70 degrees C was determined. It was observed that the storage modulus for MDLs (Manganese Doping Levels) of 0%, 1% and 10% decreased with increase in temperature while that with MDLs of 20% and 50% increase with increase in temperature. MDLs of 20% and 50% appear not to allow for damping but MDLs <= 20% allow damping at temperature range of 45 degrees C <= T <= 70 degrees C. The magnitude of storage moduli of GaAs is smaller than that for ferromagnetic Ga1-xMnxAs systems. The loss moduli for GaAs were found to reduce with increase in temperature. Its magnitude of reducing gradient is smaller than Ga1-xMnxAs systems. The two temperature extremes show a general reduction in loss moduli for different MDLs at the study temperature range. From damping factor analysis, damping factors for ferromagnetic Ga1-xMnxAs was found to increase with decrease in MDLs contrary to GaAs which recorded the largest damping factor at 45 degrees C <= T <= 70 degrees C Hence, MDL of 20% shows little damping followed by 50% while MDL of 0% has the most damping in an increasing trend with temperature. (C) 2013 Elsevier Ltd. All rights reserved.