79 resultados para Heat resistant materials.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia (Entomologia Agrícola) - FCAV
Resumo:
Materiais estruturais utilizados no projeto de equipamentos e instalações industriais podem apresentar mudança de seu comportamento à fratura quando se varia a temperatura. Este tipo de comportamento caracteriza-se pela existência de uma curva de transição, onde 3 regiões ficam bem definidas: os patamares inferior e superior e a região de transição. Na região de transição, os resultados experimentais apresentam alto espalhamento e são bastante dependentes da geometria ensaiada. Para solucionar este problema, foi desenvolvido um modelo analítico experimental, que resultou na edição da norma ASTM E1921-97. O trabalho inclui um estudo da influência de diversas rotas de tratamentos térmicos aplicadas em um aço 4130 utilizado pela indústria aeronáutica, um aço de qualidade API utilizado pela indústria petrolífera e um aço da classe A516 atualmente utilizado pela indústria nacional de vasos de pressão, na microestrutura, propriedades mecânicas de tração e tenacidade à fratura. Os resultados mostraram que o aço 4130 A450, apresentou a melhor correlação entre resistência e tenacidade entre as microestruturas pesquisadas. Este comportamento deve estar associado a rota de tratamento térmico aplicada a esta condição. O tratamento de austêmpera possibilita a formação de bainita que, tradicionalmente é conhecida por apresentar elevados valores de tenacidade. O método proposto pela ASTM pode ser considerado viável para as diversas microestruturas pesquisadas ampliando a aplicação da metodologia que recomenda o ensaio apenas para aços ferríticos. No entanto, a metodologia da Curva Mestra em materiais tratados termicamente deve ser conduzida de forma a se estabelecer parâmetros que considerem as modificações microestruturais sofridas pelo material.
Resumo:
A possible way for increasing the cutting tool life can be achieved by heating the workpiece in order to diminish the shear stress of material and thus decrease the machining forces. In this study, quartz electrical resistances were set around the workpiece for heating it during the turning. In the tests, heat-resistant austenitic alloy steel was used, hardenable by precipitation, mainly used in combustion engine exhaustion valves, among other special applications for industry. The results showed that in the hot machining the cutting tool life can be increased by 340% for the highest cutting speed tested and had a reduction of 205% on workpiece surface roughness, accompanied by a force decrease in relation to conventional turning. In addition, the chips formed in hot turning exhibited a stronger tendency to continuous chip formation indicating less energy spent in material removal process. Microhardness tests performed in the workpieces subsurface layers at 5 m depth revealed slightly higher values in the hot machining than in conventional, showing a tendency toward the formation of compressive residual stress into plastically deformed layer. The hot turning also showed better performance than machining using cutting fluid. Since it is possible to avoid the use of cutting fluid, this machining method can be considered better for the environment and for the human health.
Resumo:
In recent years, increasing demand for energy has led to studies to increase the amount of electricity produced. Due to this fact, more and more boilers are becoming important sources of electricity generation. To raise the efficiency of energy generated in the boilers is necessary to raise the steam pressure and temperature to values previously unimaginable. The use of more resistant materials and maintenance practices and most appropriate operation made it possible. The objective of this study is to test the main types of failure in a chemical recovery boiler, in particular due to fatigue in the superheater, because it is a component subjected to high temperatures and thus more subject to different failures. In this manner this study aims to reduce the incidence of unscheduled maintenance shutdowns, increasing the operation time under appropriate conditions. Modeling performed in this study, the failure did not occur, because we considered only the mechanical stress. Under normal conditions, mechanical stress in combination with thermal stresses can cause cracks in the tubes due to cyclical stresses, leading to fatigue failure
Resumo:
The automobile industry is increasingly interested in reducing vehicle weight for greater speed, lower fuel consumption and emissions, through innovation of materials and processes. One way to do this is to seek the replacement of conventional processes by the use of structural adhesives. Structural adhesives are highly resistant materials, which can replace rivets, bolts and welds allowing the substrate / adhesive assemble is stronger than the substrate itself. One of the major advantages of gluing with respect to welding is its esthetic appearance, since it does not leave marks. For this reason, parts to be soldered require a minimum thickness so that the marks do not appear, since the pieces from gluing have no restriction as to the thickness. By replacing the vibration welding process for gluing process of the instrument panel parts of an automobile, one obtains a reduction of the thickness of the parts and therefore it decreases the weight of the car. This work aims to study the various structural adhesives that already exist on the market to be applied on the instrument panel. The mechanical test performed to measure the maximum adhesive strength was the Lap Shear Test at 23°C (room temperature), -35°C and 85°C. The types of adhesives used were the hot-melt and the bi-component. By the results obtained, it is in favor using the bi-component for application to the union of instrument panel parts
Resumo:
Machining is one of the most commonly manufacturing processes used in the modern world, consuming millions of dollars annually. Because of this, it is crucial for the automotive industry to reduce costs on their heat-resistant alloy machining processes, such as compacted graphite iron (CGI), which has shown an increasing trend of its application in diesel engine blocks, brakes disks, among other applications, due to its superior mechanical properties to gray cast iron. Despite this advantage, its use is still limited due to its difficulty of machining, moreover, cutting tools are displayed as the main factor in increasing the machining cost. Seeking an alternative to a better machinability of CGI, this paper aims to study two types of ceramic tools developed in Brazil, and benchmark their performance by dry turning. For this, were used CGI class 450 and two tools: ceramic of silicon nitride (Si3N4) and alumina-based (Al2O3), with a cutting speed (Vc) of 300, 400 and 500 m / min; feed (f) of 0.2 mm / rev and depth of cut (ap) of 0.5 mm, using three replicates and starting with new cutting edges. The results showed that the Al2O3 tool had the best performance in Vc of 500 m / min, while the Si3N4 tool had the best results in Vc of 300 m / min. This can be explained by the tool of Si3N4 based include soft intergranular phase, called amorphous, while alumina has higher abrasion resistance due to its high refractoriness. The results make it clear that the tools have significant potential for machining of compacted graphite iron, being necessary a strict control of the cutting parameters used
Experimental and numerical study of heat transfer in hot machined workpiece using infrared radiation
Resumo:
One of the greatest problems found in machining is related to the cutting tool wear. A way for increasing the tool life points out to the development of materials more resistant to wear, such as PCBN inserts. However, the unit cost of these tools is considerable high, around 10 to 20 times compared to coated carbide insert, besides its better performance occurs in high speeds requiring modern machine tools. Another way, less studied is the workpiece heating in order to diminish the shear stress material and thus reduce the machining forces allowing an increase of tool life. For understanding the heat transfer influences by conduction in this machining process, a mathematical model was developed to allow a simplified numerical simulation, using the finite element method, in order to determine the temperature profiles inside the workpiece.
Resumo:
The use of chemical methods in the synthesis of high-quality and small-size polycrystalline samples has been increased in recent years. In this work, a chemical route based on an aqueous precursor solution of metals followed by the addition of a water-soluble polymer formed by ethylenediaminetetraacetic acid (EDTA) and ethylene glycol (EG) was tested to produce superconducting mesoscopic YBa(2)Cu(3)O(7-gamma) samples. Different conditions of heat treatments and the effects of argon and oxygen atmospheres during the calcination steps were traced using X-ray diffraction (XRD), scanning electron microscopy (SEM) and magnetic measurements. (C) 2008 Elsevier B. V. All rights reserved.
Resumo:
Research has clarified the properties required for polymers that resist bacterial colonisation for use in medical devices. The increase in antibiotic-resistant microorganisms has prompted interest in the use of silver as an antimicrobial agent. Silver-based polymers can protect the inner and outer surfaces of devices against the attachment of microorganisms. Thus, this review focuses on the mechanisms of various silver forms as antimicrobial agents against different microorganisms and biofilms as well as the dissociation of silver ions and the resulting reduction in antimicrobial efficacy for medical devices. This work suggests that the characteristics of released silver ions depend on the nature of the silver antimicrobial used and the polymer matrix. In addition, the elementary silver, silver zeolite and silver nanoparticles, used in polymers or as coatings could be used as antimicrobial biomaterials for a variety of promising applications. (C) 2009 Elsevier B. V. and the International Society of Chemotherapy. All rights reserved.
Resumo:
Statement of the problem. In selecting a disinfectant for dental prostheses, compatibility between the disinfectant and the type of denture base material must be considered to avoid adverse effects on the hardness of the acrylic resin.Purpose. This study investigated the hardness of 2 denture base resins after disinfection and long-term water immersion.Material and methods. Thirty-two disk-shaped specimens (13 mm in diameter and 8 mm thick) were fabricated from each resin (Lucitone 550 and QC-20), polished, stored in water at 37degreesC for 48 hours, and submitted to hardness tests (Vickers hardness number [VHN]) before disinfection. Disinfection methods included scrubbing with 4% chlorhexidine gluconate for 1 minute, immersion for 10 minutes in I of the tested disinfectant Solutions (n=8) (3.78% sodium perborate, 4% chlorhexidine gluconate, or 1% sodium hypochorite), and immersion in water for 3 minutes. The disinfection procedures were repeated 4 times, and 12 hardness measurements were made on each specimen. Control specimens (not disinfected) were stored in water for 56 minutes. Hardness tests (VHN) were also performed after 15, 30, 60, 90, and 120 days of storage in water. Statistical analyses of data were conducted with a repeated measures 3-way analysis of variance (ANOVA) and Tukey post-hoc test (alpha=.05).Results. Mean values +/- SD for Lucitone 550 (16.52 +/- 0.94 VHN) and QC-20 (9.61 +/- 0.62 VHN) demonstrated a significant (P<.05) decrease in hardness after disinfection, regardless of material and disinfectant solutions used (Lucitone 550: 15.25 +/- 0.74; QC-20: 8.09 +/- 0.39). However, this effect was reversed after 15 days of storage in water. Both materials exhibited a continuous increase (P<.05) in hardness values for up to 60 days of water storage, after which no significant change was observed.Conclusion. Within the limitations of this in vitro study, QC-20 and Lucitone 550 specimens exhibited significantly lower hardness values after disinfection regardless of the disinfectant solution used.
Resumo:
Statement of problem. Adverse reactions to the materials used for the fabrication and reline of removable denture bases have been observed.Purpose. The purpose of this study was to systematically review the published literature on the cytotoxicity of denture base and hard reline materials.Material and methods. MEDLINE via PubMed, Google Scholar, and Scopus databases for the period January 1979 to December 2009 were searched with the following key words: (biocompatibility OR cytotoxic* OR allergy OR burning mouth OR cell culture techniques) and (acrylic resins OR denture OR monomer OR relin* OR denture liners). The inclusion criteria included in vitro studies using either animal or human cells, in which the cytotoxicity of the denture base and hard chairside reline resins was tested. Studies of resilient lining materials and those that evaluated other parameters such as genotoxicity and mutagenicity were excluded. Articles published in the English language and in peer-reviewed journals focusing on the cytotoxicity of these materials were reviewed.Results. A total of 1443 articles were identified through the search. From these, 20 studies were judged to meet the selection criteria and were included in the review. In the majority of the studies, continuous cell lines were exposed to eluates of specimens made from the materials, and mitochondrial activity was used to estimate cell viability. The tested acrylic resins were grouped according to 5 major categories: (1) heat-polymerized; (2) microwave-polymerized; (3) autopolymerizing; (4) light-polymerized; and (5) hard chairside reliners.Conclusions. This review provided some evidence that the heat-polymerized resins showed lower cytotoxic effects than autopolymerizing denture base acrylic resins and light or dual polymerized reline resins. However, because of the large number of variables in the reviewed literature, a definitive conclusion could not be drawn. (J Prosthet Dent 2012;107:114-127)
Resumo:
This study evaluated the influence of microwave disinfection on the strength of intact and relined denture bases. Water sorption and solubility were also evaluated. A heat-polymerized acrylic resin (Lucitone 550) was used to construct 4-mm-thick (n = 40) and 2-mm-thick (n = 160) denture bases. Denture bases (2mm) were relined with an autopolymerizing resin (Tokuso Rebase Fast, Ufi Gel Hard, Kooliner, or New Truliner). Specimens were divided into four groups (n = 10): without treatment, one or seven cycles of microwave disinfection (650 W for 6 min), and water storage at 37 degrees C for 7 days. Specimens were vertically loaded (5 mm/min) until failure. Disc-shaped specimens (50 min x 0.5 mm) were fabricated (n = 10) to evaluate water sorption and solubility. Data on maximum fracture load (N), deflection (%), and solubility (%) were analyzed by two-way analysis of variance and Student-Newman-Keuls tests (alpha = 0.05). One cycle of microwave disinfection decreased the deflection at fracture and fracture energy of Tokuso Rebase Fast and New Truliner specimens. The strength of denture bases microwaved daily for 7 days was similar to the strength of those immersed in water for 7 days. Microwave disinfection increased the water sorption of all materials and affected the solubility of the reline materials. (C) 2007 Wiley Periodicals, Inc.