52 resultados para Harmonic drives.
Resumo:
This work presents a new three-phase transformer modeling suitable for simulations in Pspice environment, which until now represents the electrical characteristics of a real transformer. It is proposed the model comparison to a three-phase transformer modeling present in EMTP - ATP program, which includes the electrical and magnetic characteristics. In addition, a set including non-linear loads and a real three-phase transformer was prepared in order to compare and validate the results of this new proposed model. The three-phase Pspice transformer modeling, different from the conventional one using inductance coupling, is remarkable for its simplicity and ease in simulation process, since it uses available voltage and current sources present in Pspice program, enabling simulations of three-phase network system including the most common configuration, three wires in the primary side and four wires in the secondary side (three-phases and neutral). Finally, the proposed modeling becomes a powerful tool for three-phase network simulations due to its simplicity and accuracy, able to simulate and analyze harmonic flow in three-phase systems under balanced and unbalanced conditions.
On bifurcation and symmetry of solutions of symmetric nonlinear equations with odd-harmonic forcings
Resumo:
In this work we study existence, bifurcation, and symmetries of small solutions of the nonlinear equation Lx = N(x, p, epsilon) + mu f, which is supposed to be equivariant under the action of a group OHm, and where f is supposed to be OHm-invariant. We assume that L is a linear operator and N(., p, epsilon) is a nonlinear operator, both defined in a Banach space X, with values in a Banach space Z, and p, mu, and epsilon are small real parameters. Under certain conditions we show the existence of symmetric solutions and under additional conditions we prove that these are the only feasible solutions. Some examples of nonlinear ordinary and partial differential equations are analyzed. (C) 1995 Academic Press, Inc.
Resumo:
We show that relativistic mean fields theories with scalar S, and vector V, quadratic radial potentials can generate a harmonic oscillator with exact pseudospin symmetry and positive energy bound states when S = -V. The eigenenergies are quite different from those of the non-relativistic harmonic oscillator. We also discuss a mechanism for perturbatively breaking this, symmetry by introducing a tensor potential. Our results shed light into the intrinsic relativistic nature of the pseudospin symmetry, which might be important in high density systems such as neutron stars.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A perturbative study of a class of nonsingular spiked harmonic oscillators defined by the Hamiltonian H= -d2/dr2 + r2 + λ/rα in the domain [0,∞] is carried out, in the two extremes of a weak coupling and a strong coupling regimes. A path has been found to connect both expansions for α near 2. © 1991 American Institute of Physics.
Resumo:
The exact propagator beyond and at caustics for a pair of coupled and driven oscillators with different frequencies and masses is calculated using the path-integral approach. The exact wavefunctions and energies are also presented. Finally the propagator is re-calculated through an alternative method, using the δfunction. © 1992 IOP Publishing Ltd.
Resumo:
The three-dimensional three-body problem with non-equal masses interacting through pairwise harmonic forces of non-equal strengths is analysed. It is shown that the Jacobi coordinates per se do not decouple this problem but lead to the problem of two coupled three-dimensional harmonic oscillators which becomes exactly soluble through the use of an additional coordinate set.
Resumo:
A harmonic oscillator isospectral potential obtained by supersymmetric algebra applied to quantum mechanics is suggested to simulate DNA H bonds. Thermic denaturation is studied with this potential.
Resumo:
A generalized relativistic harmonic oscillator for spin 1/2 particles is studied. The Dirac Hamiltonian contains a scalar S and a vector V quadratic potentials in the radial coordinate, as well as a tensor potential U linear in r. Setting either or both combinations Σ=5+V and δ=V-S to zero, analytical solutions for bound states of the corresponding Dirac equations are found. The eigenenergies and wave functions are presented and particular cases are discussed, devoting a special attention to the nonrelativistic limit and the case Σ=0, for which pseudospin symmetry is exact. We also show that the case U=δ=0 is the most natural generalization of the nonrelativistic harmonic oscillator. The radial node structure of the Dirac spinor is studied for several combinations of harmonic-oscillator potentials, and that study allows us to explain why nuclear intruder levels cannot be described in the framework of the relativistic harmonic oscillator in the pseudospin limit.
Resumo:
We compute the analytical solutions of the generalized relativistic harmonic oscillator in 1+1 dimensions, including a linear pseudoscalar potential and quadratic scalar and vector potentials which have equal or opposite signs These are the conditions in which pseudospin or spin symmetries can be realized We consider positive and negative quadratic potentials and present their bound-state solutions for fermions and an-tifermions. We relate the spin-type and pseudospin-type spectra through charge conjugation and γ5 chiral transformations. Finally, we establish a relation of the solutions found with single-particle states of nuclei described by relativistic mean-field theories with tensor interactions and discuss the conditions in which one may have both nucleon and antin-ucleon bound states.
Resumo:
This paper is based on the analysis and implementation of a new drive system applied to refrigeration systems, complying with the restrictions imposed by the IEC standards (Harmonic/Flicker/EMI-Electromagnetic Interference restrictions), in order to obtain high efficiency, high power factor, reduced harmonic distortion in the input current and reduced electromagnetic interference, with excellent performance in temperature control of a refrigeration prototype system (automatic control, precision and high dynamic response). The proposal is replace the single-phase motor by a three-phase motor, in the conventional refrigeration system. In this way, a proper control technique can be applied, using a closed-loop (feedback control), that will allow an accurate adjustment of the desirable temperature. The proposed refrigeration prototype uses a 0.5Hp three-phase motor and an open (Belt-Drive) Bitzer IY type compressor. The input rectifier stage's features include the reduction in the input current ripple, the reduction in the output voltage ripple, the use of low stress devices, low volume for the EMI input filter, high input power factor (PF), and low total harmonic distortion (THD) in the input current, in compliance with the IEC61000-3-2 standards. The digital controller for the output three-phase inverter stage has been developed using a conventional voltage-frequency control (scalar V/f control), and a simplified stator oriented Vector control, in order to verify the feasibility and performance of the proposed digital controls for continuous temperature control applied at the refrigerator prototype. ©2008 IEEE.
Resumo:
A neural method is presented in this paper to identify the harmonic components of an ac controller. The components are identified by analyzing the single-phase current waveform. The method effectiveness is verified by applying it to an active power filter (APF) model dedicated to the selective harmonic compensation. Simulation results using theoretical and experimental data are presented to validate the proposed approach. © 2008 IEEE.
Resumo:
This paper presents possible selective current compensation strategies based on the Conservative Power Theory (CPT). This recently proposed theory, introduces the concept of complex power conservation under non-sinusoidal conditions. Moreover, the related current decompositions results in several current terms, which are associated with a specific physical phenomena (power absorption P, energy storage Q, voltage and current distortion D). Such current components are used in this work for the definition of different current compensators, which can be selective in terms of minimizing particular disturbing effects. The choice of one or other current component for compensation directly affects the sizing and cost of active and/or passive devices and it will be demonstrated that it can be done to attend predefined limits for harmonic distortion, unbalances and/or power factor. Single and three-phase compensation strategies will be discussed by means of the CPT Framework. Simulation and experimental results will be demonstrated in order to validate their performance. © 2009 IEEE.