45 resultados para HIGH-VELOCITY


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Four types of stainless steel coatings prepared by a high velocity oxy-fuel spraying system (HVOF) were studied. Differences among coated steels were related to the spraying parameters, which influenced the behavior of the samples against the corrosion. The electrochemical behavior of the stainless steel coatings was strongly influenced by porosity, the presence of micro- and macro-cracks, and also of un-melted particles. Once the electrolyte reached the steel substrate via these defects, the galvanic pair formed between the coating and substrate-accelerated corrosion, leading to the depletion of the coating. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermally sprayed HVOF coatings are increasingly being used in industrial applications where high wear and corrosion resistance are needed [1,2]. In this paper, electrochemical ac and de experiments were used in order to obtain the corrosion resistance of coated steel with different numbers of Cr3C2-NiCr layers. This work has been performed in order to determine the role of coating thickness in the corrosion behaviour of a steel protected with cermet thermally sprayed coatings. It is known that a thicker layer protects better against corrosion when a metallic coating is evaluated. But cermet coatings, such as Cr3C2-NiCr, contain higher levels of porosity and residual stresses than metallic coatings, which really could influence the corrosion resistance of the deposited layer. Electrochemical measurements, such as Open-Circuit Potential (E-Osubset of), Polarisation Resistance (RP) and Cyclic Voltammetry (CV), were performed in an aerated 3.4 NaCI media (%wt.). Electrochemical Impedance Measurements (EIS) were also done in order to obtain a mechanism that explains the corrosion process. Structural Characterisation was carried out by means of Optical and Scanning Electron Microscopes (OM, SEM) with an Energy Dispersive Spectrometry analyser (EDS). Results show that the corrosion resistance of the complete system is mainly influenced by the substrate behaviour. The application of a higher number of deposited layers did not substantially increase their anticorrosive properties. Stress generation during the spraying deposition process plays an important role in the behaviour of the coated steel against corrosion phenomena. (C) 2002 Elsevier B.V. B.V All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electrochemical behaviour of coated Cr3C2-NiCr steel in aerated 0.5 M H2SO4 solution was studied by means of electrochemical a.c. and d.c. measurements. A complete structural characterization of the coated steel before and after electrochemical tests was also carried out to access the corrosion mechanism of coated steel, electrolyte penetration through the coating, and to confirm the results obtained using electrochemical techniques. Two types of Cr3C2-NiCr coatings produced by a high velocity oxy-fuel spraying system (HVOF) were studied. Differences between coated steels are related to the spraying parameters reflecting their behaviour against corrosion phenomena. The electrochemical behaviour of the coated steel was strongly influenced by porosity and the presence of microcracks in the coating. Once the electrolyte reaches the steel substrate, it corrodes in a galvanic manner resulting in coating detachment from the steel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of heat-treatments on the electrochemical behavior of thermal spray Cr3C2-NiCr coatings prepared by high velocity oxygen fuel (HVOF) was studied in NaCl solution, at 25 degrees C, using open-circuit potential (E-OC) and electrochemical impedance spectroscopy (EIS) measurements. Coating characterization were performed before and after the heat-treatments and electrochemical tests by scanning electron microscopy, X-ray diffraction, and Auger electron spectroscopy. In addition to the changes in the original powder composition occurring during HVOF process, heat-treatment performed at 450 degrees C caused no significant changes in electrochemical response compared with untreated sample, and at 760 degrees C the main difference was the formation of a thin and defective layer of Cr2O3 at the coating surface, which increased the total impedance at the first day of immersion. Higher influence on the electrochemical was noted for samples treated at 880 degrees C, which also showed higher E-OC and total impedance, and lower corrosion current. This behavior was interpreted considering the formation of a chromium oxide layer on the coating surface, dissolution and decomposition of smaller carbide particles and their surface enrichment with Cr due to C diffusion and dissolution into the matrix, and possible Ni, Cr, and Fe diffusion to coating/substrate interface. (c) 2006 the Electrochemical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermal spray WC-based coatings are widely used in the aircraft industry mainly for their resistance to wear, reworking and rebuilding operations and repair of worn components on landing gear, hydraulic cylinders, actuators, propeller hub assemblies, gas turbine engines, and so on. The aircraft industry is also trying to use thermal spray technology to replace electroplating coatings such as hard chromium. In the present work, WC-Co coatings were built up on an AA 7050 aluminum alloy using high velocity oxygen fuel (HVOF) technology and a liquid nitrogen cooling prototype system. The influence of the spray parameters (standard conditions, W19S, increasing the oxygen flux, W19H, and also increasing the carrier gas flux, W19F) on corrosion, friction, and abrasive wear resistance were also studied. The coatings were characterized using optical (OM) and scanning electron (SEM) microscopy, and X-ray diffraction (XRD). The friction and abrasive wear resistance of the coatings were studied using Rubber Wheel and Ball on Disk tests. The electrochemical studies were conducted using open-circuit potential (E(oc)) measurements and electrochemical impedance spectroscopy (EIS). Differences among coated samples were mainly related to the variation of the thermal spray parameters used during the spray process. No significant differences were observed in the wear resistance for the coatings studied, and all of them showed a wear rate around 10 times lower than that of the aluminum alloy. The results of mass loss and wear rate were interpreted considering different mechanisms. Comparing the different spray parameters, the oxygen flux (higher flame temperature) produced the sample which showed the highest corrosion resistance in aerated and unstirred 3.5% NaCl solution. Aluminum ions were detected on the surface almost immediately after the immersion of samples W19S and W19F in chloride solution, showing that the electrolyte reached the substrate and galvanic corrosion probably occurred. For sample W19H, aluminum ions were not detected even after 120 min of immersion in NaCl solution. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The tendency of the aircraft industry is to enhance customer value by improving performance and reducing environmental impact. In view of availability, aluminum alloys have a historically tendency to faster insertion due to their lower manufacturing and operated production infrastructure. In landing gear components, wear and corrosion control of many components is accomplished by surface treatments of chrome electroplating on steel or anodizing of aluminum. One of the most interesting environmentally safer and cleaner alternatives for the replacement of hard chrome plating or anodizing is tungsten carbide thermal spray coating, applied by the high velocity oxy fuel (HVOF) process. However, it was observed that residual stresses originating from these coatings reduce the fatigue strength of a component.An effective process as shot peening treatment, considered to improve the fatigue strength, pushes the crack sources beneath the surface in most of medium and high cycle cases, due to the compressive residual stress field induced. The objective of this research is to evaluate a tungsten carbide cobalt (WC-Co) coating applied by the high velocity oxy fuel (HVOF) process, used to replace anodizing. Anodic films were grown on 7050-T7451 aluminum alloy by sulfuric acid anodizing, chromic acid anodizing and hard anodizing. The influence on axial fatigue strength of anodic films grown on the aluminum alloy surface is to degrade the stress-life performance of the base material. Three groups of specimens were prepared and tested in axial fatigue to obtain S-N curves: base material, base material coated by HVOF and base material shot peened and coated.Experimental results revealed increase in the fatigue strength of Al 7050-T7451 alloy associated with the WC 17% Co coating. on the other hand, a reduction in fatigue life occurred in the shot peened and coated condition. Scanning electron microscopy technique and optical microscopy were used to observe crack origin sites, thickness and coating/substrate adhesion. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microhabitat and plant structure of seven Batrachospermum populations (four of Batrachospermum delicatulum (= Sirodotia delicatula), one of Batrachospermum macrosporum and two of the 'Chantransia' stage), including the influence of physical variables (current velocity, depth, irradiance and substratum), were investigated in four streams of São Paulo State, southeastern Brazil. The populations of B. delicatulum and the 'Chantransia' stage occurred under very diverse microhabitat conditions, which probably contributes to their wide spatial and seasonal distribution in Brazilian streams. Results suggest branch reconfiguration as a probable mechanism of adaptation to current velocity based on the occurrence of: (i) B. macrosporum (a large mucilaginous form with presumably little ability for branch reconfiguration) under lower current velocity than B. delicatulum; (ii) only dense plants in populations with high current velocities (> 60 cm s-1), whereas 53-77% of dense plants were seen in populations exposed to lower currents (< 40 cm s-1); (iii) positive correlations of plant length with internode length in populations under low current velocities and negative correlation in a population with high velocity (132 cm s-1); and (iv) negative correlations of current velocity with plant diameter and internode length in a population under high flow. This study, involving mainly dioecious populations, revealed that B. delicatulum displayed higher fertilization rates than B. macrosporum. A complementary explanation for a dioecious species to increase fertilization success was proposed consisting of outcrossing among intermingled male and female adjacent plants within an algal spot.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermal spray coatings as Cr3C2-NiCr obtained by high velocity oxy-fuel spraying (HVOF) are mainly applied due to their behaviour against aggressive erosive-abrasive and corrosive atmospheres and their thermal stability at high temperatures [1]. In order to increase the corrosion protection that it offers to the substrate trying to close the interconnected pores, it is possible to apply a thermal treatment with the gun during the spraying of the coating. This treatment could be applied in different ways. One of these ways consists of spraying only a few layers of coating followed by thermal treatment and finally the spray of the rest of layers. This thermal treatment on spraying is studied related to the corrosion properties of the system. The study comprises the electrochemical characterisation of the system by open circuit potential (OC), polarisation resistance (Rp), cyclic voltammetry (CV) and impedance spectroscopy measurements (EIS). Optical and scanning electron microscopy characterisation (OM and SEM) of the top and cross-section of the system has been used in order to justify the electrochemical results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Piezoelectric actuators are widely used in positioning systems which demand high resolution such as scanning microscopy, fast mirror scanners, vibration cancellation, cell manipulation, etc. In this work a piezoelectric flextensional actuator (PFA), designed with the topology optimization method, is experimentally characterized by the measurement of its nanometric displacements using a Michelson interferometer. Because this detection process is non-linear, adequate techniques must be applied to obtain a linear relationship between an output electrical signal and the induced optical phase shift. Ideally, the bias phase shift in the interferometer should remain constant, but in practice it suffers from fading. The J1-J4 spectral analysis method provides a linear and direct measurement of dynamic phase shift in a no-feedback and no-phase bias optical homodyne interferometer. PFA application such as micromanipulation in biotechnology demands fast and precise movements. So, in order to operate with arbitrary control signals the PFA must have frequency bandwidth of several kHz. However as the natural frequencies of the PFA are low, unwanted dynamics of the structure are often a problem, especially for scanning motion, but also if trajectories have to be followed with high velocities, because of the tracking error phenomenon. So the PFA must be designed in such a manner that the first mechanical resonance occurs far beyond this band. Thus it is important to know all the PFA resonance frequencies. In this work the linearity and frequency response of the PFA are evaluated up to 50 kHz using optical interferometry and the J1-J4 method.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is well known that the microcrack density is a fundamental parameter in hard chromium electroplating. The chemical and mechanical properties of this coating are widely dependent on its microcrack density. In this paper a simple image analysis procedure to determine microcrack density is presented in order to demonstrate it as a fundamental tool to estimate the fatigue, corrosion and wear behavior, as well as the residual stress field of a coated component. For this purpose, the image analysis procedure was carried out on two kinds of hard chromium plating - one called accelerated (high velocity of deposition and fluoride-free) and the other conventional (with fluoride). The coatings were applied on samples of AISI 4340 aeronautical steel, which is widely used in aircraft landing gear components. To characterize the practical significance of this study, the microcrack density results were related to the fatigue, wear and corrosion behavior from previous study and to the residual stress field in the coatings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciências da Motricidade - IBRC