159 resultados para Greenstone belt
Resumo:
Pós-graduação em Geologia Regional - IGCE
Resumo:
Pós-graduação em Geologia Regional - IGCE
Resumo:
Geological researches conducted in the past few years detected, through deep drill hole data, the presence of alkaline rocks in the region of Três Fontes-MG, where the Barbacena Group rocks, the Morro do Ferro Greenstone Belt rocks and Araxá/Canastra groups‟ rocks are exposed. This paper aimed the petrographic and chemical characterization of these alkaline rock types, which have not yet been described in the literature. Based on petrographic descriptions and geochemical and Scanning Electron Microscopy analysis, it was possible to characterize the rock in question as lamprophyre, rich in carbonates, phlogopite, pyroxene, olivine, titaniferous opaque minerals and apatite concentrations that reach 7%. This occurrence corresponds to an alkaline intrusion, which caused brecciation of host rocks, possibly indicating that the material is explosive, however, in the study area there was no evidence of volcanic activity on the surface
Resumo:
The Ambrósio dome is a granodioritic batholiths of elliptical geometry, 40km length in the N-S direction and variable width of up to 8 km, has a weakly deformed nucleus with intensely deformed margins, in its northern portion is intruded in orthogneiss that belong to the Archean basement, and its southern part comes in direct contact with the volcano-sedimentary sequence of Paleoproterozoic Rio Itapicuru Greenstone Belt (RIGB), Bahia. From geological mapping on 1:25:000 scale were recognized two structural domains, termed West Domain and East Domain. From investigation of these domains was identified a major shear zone, which puts in contact two distinct stratigraphic sequences, one west, consisting primarily of metavulcanic and metapyroclastic rocks with records of low-grade regional metamorphism, and east discontinuity a metassedimentary domain, with record of gradational contact metamorphism, deformation and compression generated from the rise of Ambrosio Pluton. Such records put into question the structural and stratigraphic models in the literature so far
Resumo:
Studies of mafic-ultramafic bodies have been carried out through the years due to their great use on the interpretation of geochemical and geotectonic processes that took place in Earth's history. Amongst them, chromitites are notably recognized for being excellent indicators of their parental magma chemistry and of different geotectonic environments, as well for frequently containing associated noble metals mineralization. Thus the investigation of one of this ultramafic bodies that occurs inside the Pilar de Goiás Greenstone Belt was proposed, resulting in a detailed map of the chromitites and country rocks, as well as innumerous new data on the chemistry of chromite and associated matrix and accessory minerals. These studies were based upon geological field observations, optic and Scanning Electron Microscope (SEM), besides electron microprobe and cathodoluminescence analysis performed at the “Eugen F. Stumpfl Laboratory” of the Montanuniversität Institute of Resource Mineralogy, University of Leoben - Leoben, Austria. The chromitites are composed of 40-70% in volume of chromite (~50% on average), 14-55% of talc (~30% on average), 3-60% of chromium rich chlorite (~20% on average), traces to 4% of iron hydroxides and traces to 3% of rutile (1,5% on average). The chromite occurs as large spherical aggregates or as fine grained subhedral crystals disseminated in the matrix. This aggregates have diameters of 0.3-1.5 cm (1 cm on average) and are extremely well rounded, massive to intensively fractured, and commonly deformed to ellipsoids. When observed under the microscope, these aggregates show well rounded to slightly irregular borders, but on their interiors, these structures are represented by fine to medium grained euhedral to subhedral chromite crystals that have sharp contacts between themselves. The rock's matrix is basically made of chlorite and talc that define a metamorphic foliation (Sn), being the talc an alteration product ...
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Pluriserial Ribeira Magmatic System-590 of the Late Precambrian Ribeira Fold Belt comprises seven groups of high-K rocks of crustal or mantle origin with ages ranging between 620 and 570 Ma. One of these groups is represented by transalkaline suites akin to appinitic lamprophyres. The suites assemble one or more of following lithologies: (+/- quartz) gabbros and monzogabbros, (+/- quartz) diorites and monzodiorites, (+/- quartz) monzonites and syenites in addition to rare granites. All these rocks occur together in the Piracaia pluton, State of São Paulo. The mineralogy of the Piracaia suite comprises variable amounts of plagioclase (An 60-10), alkali-feldspars (orthoclase, microcline, albite), ortho- (Fe-hypersthene) and clinopyroxenes (augite), amphiboles (hornblende and rare late Fe-hastingsite), abundant biotite, quartz, opaques, sphene, allanite and zircon. Several magmatic pulses constructed the pluton. The Piracaia magma bulk trend evolved initially along the silica-undersaturation plane with simultaneous fractionation of accessory, mafic and felsic minerals. These are segregated in feldspar-rich cumulates. In the late stage, the evolutionary trend followed two distinct paths: one along the or-ab thermal barrier with the crystallization of syenites; the second one along the thermal valley in the or-ab-qz subsystem, producing quartz-syenites and granites. The source of the Piracaia magma was a 'vein-plus-wall-rock-system '. Together the pulses reflect increasing and decreasing participation of peridotites and mica pyroxenites, respectively, in the magmatogenic process. The magmatic pulses were stored in magma chambers, several drained by deep faults or fractures, which were successively reactivated and recharged. Each new pulse underwent mixing with earlier residual magma, followed by fractionation. During ascent through the hot and thickened post-collisional crust, the magma pulses underwent minor compositional changes by crustal contamination. The concentration of valuable elements (Cu, Zn, Gd) in the Piracaia pluton occurred during two phases of the magmatic evolution. Cu and Zn were enriched in cumulates and Gd was concentrated in residual quartz-syenitic veins. Due to their homogeneous dark colour and texture, the monzodiorites are exploited both for polished dimension stones and supports for sensitive scientific instruments. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
During the Brasiliano-Pan-African Orogeny, West Gondwana formed by collisional processes around the Sao Francisco-Congo Craton. The Ribeira belt, in southeastern Brazil, resulted from northwestward collision (650-600 Ma), followed by large-scale northeast-southwest dextral strike-slip shear movements related to late-collisional escape tectonics (ca 600 Ma).In São Paulo State, three groups, also interpreted as terranes, are recognised in the Ribeira Belt, the Embu, Itapira and Sao Rogue Groups. The Embu and Itapira Groups are formed of sillimanite-gneisses, schists and migmatites intruded by Neoproterozoic calc-alkaline granitoids, all thrusted northwestward. The Sao Rogue Group is composed of metasediments and metavolcanics in greenschist-facies. Its deformation indicates a transpressional regime associated with tectonic escape. Sub-alkaline granites were emplaced in shallow levels during this regime. Microstructural studies along the Itu, Moreiras and Taxaquara Shear Zones demonstrate the coexistence of horizontal and Vertical displacement components during the transpressional regime. The vertical component is regarded as responsible for the lateral juxtaposition of different crustal levels. (C) 1999 Elsevier B.V. Limited. All rights reserved.
Resumo:
A review is presented concerning Archaean granulites occurring in some old domains of the South American Platform, which was consolidated at the end of the Brazilian Cycle (900-500 Ma). The rocks occur in different geotectonic environments and show variable ages, structures and lithological associations. The most important complexes are the Atlantic Granulite Belt in the São Francisco Craton and the Goias Granulite Belt in the Central Goias Massif, both several hundred kilometres long. The former is composed of the Caraibas Complex, the Jequié Complex, the Salvador Complex and several minor granulite occurrences along the Brazilian coast in the States of Espírito Santo and Rio de Janeiro. The latter includes the large basic-ultrabasic complexes of Barro Alto, Tocantins and Canabrava. Both belts consist of massive or foliated rocks, banded or homogeneous and varying from acidic to ultrabasic in composition. They are the result of metamorphism affecting diversified supra- and infracrustal material. The Atlantic Granulite Belt lies between greenstone/granite terrains which show ovoid and boomerang-type dome structures. The contacts between both are either tectonic or transitional. Another occurrence of Archaean granulites comprises intercalations of palaeosomes and melanosomes within migmatites and anatectic rocks. These vary in size from small lenses to irregular complexes which may attain sizes of several hundred square kilometres. Apart from migmatites, they are associated with gneisses, schists and granitoid bodies. They are located in regions which underwent remobilization of varying intensity during the Middle and Late Precambrian. The rocks show polymetamorphism, K-feldspar blastesis, tectonic overprinting and isotopic rejuvenation. These granulites are in some cases very similar to those formed during the Middle Precambrian. In some places it is therefore quite difficult to distinguish between Early and Middle Precambrian granulites - the more so, since interpretations of radiometric age values are largely controversial. At present there is no evidence of granulitic rocks related to the Late Precambrian geotectonic cycles of Brazil. © 1979.
Resumo:
The low- to medium-P Atlantic granulite belt was largely formed at 2700 m.y., but 3100 m.y. ages have been obtained from the granulite belt and adjacent craton. -J.A.H.
Resumo:
The Araguaia-Tocantins geosuture, which separates the Araguaia Fold Belt (AFB) from the Archean Amazonian Craton, was active in the late Middle Proterozoic. The Baixo Araguaia Supergroup was deposited, consisting of the Estrondo Group (lower quartzites with intercalated schists), Xambioá Formation (schists), and Canto da Vazante Formation (upper feldspathic schists); and the Tocantins Group consisting of the Couto Magalhaës Formation (phyllites, quartzites, slates, limestones, and metacherts) and Pequizeiro Formation (upper chlorite schists); and associated mafic-ultramafic bodies. The deformational history includes four regional phases of deformation within this supracrustal sequence: recumbent folds with vergence to the west; refolding with a N-S trend; an intense crenulation episode; and late thrusting from east to west. Metamorphism is of intermediate or intermediate-high pressure type with garnet, biotite, chlorite, and sericite isograds succeeded by a slightly or non-metamorphosed zone, from east to west. Rocks surrounding sparse gneissic-cored domes contain isograds of staurolite, kyanite, and fibrolite. These isograds are believed to be associated with the 1100 Ma Uruaçuano event. The Brasiliano Orogeny strongly affected the AFB with displacements due to transcurrent reactivation of great and old faults of the basement, slight folding in the supracrustal sequence, intrusion of small granite bodies, and development of domes with associated normal faults. The area underlain by the Estrondo Group was uplifted at this time, causing the deposition of the Rio das Barreiras polymictic conglomerate of the central area. K-Ar and Rb-Sr analyses date this thermo-tectonic event at 550 ± 100 Ma. The Archean basement is exposed in the cores of domes as a granite-gneiss association, the Colméia complex, which shows thermo-tectonic features that may be interpreted as polycyclic imprints (Jequié, Transamazonian?, Uruaçuano, and Brasiliano Events). © 1989.
Resumo:
Crustal discontinuities may be seen as A-type collision sutures with triple junction arrays. Shear belts developed at the block borders due to oblique plate convergence. A consistent litho-structural zoning may be observed along the border zones of the blocks: the known high-grade terrains are exposed along the upper block border and pass to distal granite-greenstone terrains; in the lower block, granite-greenstone terrains form the older basement, and supracrustals occur as a metavolcano-sedimentary belt near or adjacent to the suture. This regional litho-structural framework may be related to diachronous collisions of sialic masses which lead to their amalgamation into an extensive continental mass. -from English summary
Resumo:
The Precambrian Rio Paraíba do Sul Shear Belt comprises a 200-km-wide anastomosing network of NE-SW trending ductile shear zones extending over 1000 km of the southeastern coast of Brazil. Granulitic, gneissic-migmatitic, and granitoid terrains as well as low- to medium-grade metavolcanosedimentary sequences are included within it. These rocks were affected by strong contractional, tangential tectonics, due to west-northwestward oblique convergence of continental blocks. Subsequent transpressional tectonics accomodated large dextral, orogen-parallel movements and shortening. The plutonic Socorro Complex is one of many deformed granites with a foliation subparallel to that of the shear belt and exposes crosscutting relationships between its tectonic, magmatic, and metamorphic structures. These relationships point to a continuous magmatic evolution related to regional thrusts and strike slip, ductile shear zones. The tectonic and magmatic structural features of the Serra do Lopo Granite provide a model of emplacement by sheeting along shear zones during coeval strike-slip and cross shortening of country rocks. Geochronological data indicate that the main igneous activity of Socorro Complex spanned at least 55 million years, from the late stage of the northwestward ductile thrusting (650 Ma), through right-lateral strike slip (595 Ma) deformation. The country rocks yield discordant age data, which reflect a strong imprint of the Transamazonian tectono-metamorphic event (1.9 to 2.0 Ma). We propose a model for the origin of calcalkaline granites of the Ribeira Belt by partial melting of the lower crust with small contributions of the lithospheric mantle during transpressional thickening of plate margins, which were bounded by deep shear zones. The transpressional regime also seems to have focused granite migration from deeper into higher crustal levels along these shear zones.
Resumo:
A methodology to define favorable areas in petroleum and mineral exploration is applied, which consists in weighting the exploratory variables, in order to characterize their importance as exploration guides. The exploration data are spatially integrated in the selected area to establish the association between variables and deposits, and the relationships among distribution, topology, and indicator pattern of all variables. Two methods of statistical analysis were compared. The first one is the Weights of Evidence Modeling, a conditional probability approach (Agterberg, 1989a), and the second one is the Principal Components Analysis (Pan, 1993). In the conditional method, the favorability estimation is based on the probability of deposit and variable joint occurrence, with the weights being defined as natural logarithms of likelihood ratios. In the multivariate analysis, the cells which contain deposits are selected as control cells and the weights are determined by eigendecomposition, being represented by the coefficients of the eigenvector related to the system's largest eigenvalue. The two techniques of weighting and complementary procedures were tested on two case studies: 1. Recôncavo Basin, Northeast Brazil (for Petroleum) and 2. Itaiacoca Formation of Ribeira Belt, Southeast Brazil (for Pb-Zn Mississippi Valley Type deposits). The applied methodology proved to be easy to use and of great assistance to predict the favorability in large areas, particularly in the initial phase of exploration programs. © 1998 International Association for Mathematical Geology.