97 resultados para Greenhouse gases emissions inventory
Resumo:
Soil tillage and other methods of soil management may influence CO 2 emissions because they accelerate the mineralization of organic carbon in the soil. This study aimed to quantify the CO2 emissions under conventional tillage (CT), minimum tillage (MT) and reduced tillage (RT) during the renovation of sugarcane fields in southern Brazil. The experiment was performed on an Oxisol in the sugarcane-planting area with mechanical harvesting. An undisturbed or no-till (NT) plot was left as a control treatment. The CO2 emissions results indicated a significant interaction (p < 0.001) between tillage method and time after tillage. By quantifying the accumulated emissions over the 44 days after soil tillage, we observed that tillage-induced emissions were higher after the CT system than the RT and MT systems, reaching 350.09 g m-2 of CO2 in CT, and 51.7 and 5.5 g m-2 of CO2 in RT and MT respectively. The amount of C lost in the form of CO2 due to soil tillage practices was significant and comparable to the estimated value of potential annual C accumulation resulting from changes in the harvesting system in Brazil from burning of plant residues to the adoption of green cane harvesting. The CO 2 emissions in the CT system could respond to a loss of 80% of the potential soil C accumulated over one year as result of the adoption of mechanized sugarcane harvesting. Meanwhile, soil tillage during the renewal of the sugar plantation using RT and MT methods would result in low impact, with losses of 12% and 2% of the C that could potentially be accumulated during a one year period. © 2013 IOP Publishing Ltd.
Resumo:
The characterization of soil CO2 emissions (FCO2) is important for the study of the global carbon cycle. This phenomenon presents great variability in space and time, a characteristic that makes attempts at modeling and forecasting FCO2 challenging. Although spatial estimates have been performed in several studies, the association of these estimates with the uncertainties inherent in the estimation procedures is not considered. This study aimed to evaluate the local, spatial, local-temporal and spatial-temporal uncertainties of short-term FCO2 after harvest period in a sugar cane area. The FCO2 was featured in a sampling grid of 60m×60m containing 127 points with minimum separation distances from 0.5 to 10m between points. The FCO2 was evaluated 7 times within a total period of 10 days. The variability of FCO2 was described by descriptive statistics and variogram modeling. To calculate the uncertainties, 300 realizations made by sequential Gaussian simulation were considered. Local uncertainties were evaluated using the probability values exceeding certain critical thresholds, while the spatial uncertainties considering the probability of regions with high probability values together exceed the adopted limits. Using the daily uncertainties, the local-spatial and spatial-temporal uncertainty (Ftemp) was obtained. The daily and mean emissions showed a variability structure that was described by spherical and Gaussian models. The differences between the daily maps were related to variations in the magnitude of FCO2, covering mean values ranging from 1.28±0.11μmolm-2s-1 (F197) to 1.82±0.07μmolm-2s-1 (F195). The Ftemp showed low spatial uncertainty coupled with high local uncertainty estimates. The average emission showed great spatial uncertainty of the simulated values. The evaluation of uncertainties associated with the knowledge of temporal and spatial variability is an important tool for understanding many phenomena over time, such as the quantification of greenhouse gases or the identification of areas with high crop productivity. © 2013 Elsevier B.V.
Resumo:
Using sorghum silage, the effect of roughage/concentrate ratios was evaluated on nutrient intake, digestibility, ruminal parameters and methane production by beef cattle. Three treatments (0, 30 and 60% of concentrate in DM of the diet) were distributed in three Latin squares, with nine animals and three periods. Dry matter intake increased as the grain concentration in diet increased; pH showed opposite behavior. Methane emissions were lower for animals fed the diet exclusively with sorghum silage as compared with those fed 30% of concentrate, but was similar to that of animals receiving 60% of concentrate. Losses of ingested gross energy as methane were reduced by 33% when grain concentration was increased in the diet. Concentrations of propionic and butyric acids were greater in diets with grain concentrate; acetic acid concentration was not affected. Concentrate in diet increases available energy for the metabolism, measured by lower losses of ingested gross energy as ruminal methane. © 2013 Sociedade Brasileira de Zootecnia.
Resumo:
Brazil is a major sugarcane producer and São Paulo State cultivates 5.5 million hectares, close to 50% of Brazil's sugarcane area. The rapid increase in production has brought into question the sustainability of biofuels, especially considering the greenhouse gas (GHG) emissions associated to the agricultural sector. Despite the significant progress towards the green harvest practices, 1.67 million hectares were still burned in São Paulo State during the 2011 harvest season. Here an emissions inventory for the life cycle of sugarcane agricultural production is estimated using IPCC methodologies, according to the agriculture survey data and remote sensing database. Our hypothesis is that 1.67 million hectares shall be converted from burned to green harvest scenarios up to years 2021 (rate 1), 2014 (rate 2) or 2029 (rate 3). Those conversions would represent a significant GHG mitigation, ranging from 50.5 to 70.9 megatons of carbon dioxide equivalent (Mt CO2eq) up to 2050, depending on the conversion rate and the green harvest systems adopted: conventional (scenario S1) or conservationist management (scenario S2). We show that a green harvest scenario where crop rotation and reduced soil tillage are practiced has a higher mitigation potential (70.9 Mt CO2eq), which is already practiced in some of the sugarcane areas. Here we support the decision to not just stop burning prior to harvest, but also to consider other better practices in sugarcane areas to have a more sustainable sugarcane based ethanol production in the most dense cultivated sugarcane region in Brazil. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper addresses the context of emissions of Greenhouse Gases (GHG) from activities related to Coal, called fugitive emissions. The survey of factors, development, analysis, and suggestions for controlling emissions are conducted in order to reduce risks to the environment and people around it. The greenhouse gases absorb radiation, emitted by the Earth’s surface, and hinder their escape into space. This process is essential to terrestrial life. Increasing the concentration of those gases in the atmosphere has led to an increase in the terrestrial temperature. A selection of processes that emit gases and the study and development of calculations for measuring fugitive emissions applied in different sources from coal are performed. The greenhouse gases can be released from the extraction, processing, storage, and transportation of fossil fuels to the end consumer. Coal has 4 main fugitive factors: mining, post-mining, oxidation at low temperature, and uncontrolled combustion. The coal formation process produces methane (CH4) and carbon dioxide (CO2), being the methane, the main greenhouse gas from the coal mining and handling. The types of activities and the weight of each in the issuing process are observed. It is also made comparisons between the countries with the highest emissions rates. Are evaluated what has been done and what is needed to decrease emissions, for example the use of gas as an alternative fuel for energy generation
Resumo:
One of the biggest environmental problems of today is the climate change. Experts affirm that this global warming is related to the greenhouse effect. Its causes are directly related to human activity, especially the use of fossil fuels. In this context, companies around the world are challenged to improve energy efficiency in order to reduce the environmental impact and work toward the so-called tripod of sustainable development that focuses on the social, economic and environmental aspects of a business strategy. The first step a company can make in this regard is to conduct an inventory of emissions of greenhouse gases (GHGs). The reduction of GHG emissions in a refinery can be achieved by replacing steam turbines with electric motors to drive big machines, this reduction is achieved by relieving the steam consumption for electric power available or purchased. An important aspect associated with the reduction of GHG emissions is the best performance of the Energy Intensity Index (ERI). The objective of this study was to analyze the feasibility of the blower motorization in the regenerative cycle of a fluidized catalytic cracking unit at a specific refinery. For development work, two methods were used, the initial screening and optimization scenarios with the help of software Butyl. The results indicate that after a certain cost of natural gas this substitution becomes favorable. In addition, there is a large reduction of CO2 emissions avoided by burning fuel
Resumo:
The focus of this research study were gas exchange between soil and atmosphere of nitrous oxide (N2O) between different fertilization treatments Corn The research, conducted in the experimental field Dedelow - Brandenburg / Germany, analyzed three different fertilization treatments, aiming to quantify GHE emissions, to identify the influence of the residue of biogas in the release of these gases process in agricultural soils in search for a solution fertilization less harmful to the environment and the greenhouse effect , based on the comparison of three treatments: organic fertilization, mineral fertilization and no fertilization. It was found through the analysis of the measurements that the first was the one which issued N2O, showing that even though coming from the residue of biogas , when returned to the soil, it becomes harmful to the environment and global warming . The cultivation of energy crops can lower or raise the emissions of greenhouse gases, so it is necessary for further research on this question not only in Germany , where such research is in continuity, but also in Brazil, a pioneer in the introduction to his energy matrix of a biofuel produced from cane sugar
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)