44 resultados para Giant freshwater prawn
Resumo:
The objective of this work was to evaluate the chemical composition and fatty acid contents of Amazonian and giant river prawns. After four-month farming, with the same diet for both species, palmitic and stearic acids were the main saturated fatty acids. Oleic acid was the main monounsatured fatty acid, and the eicosapentaenoic and docosahexaenoic acids were the most abundant polyunsaturated acids. Amazonian prawn has higher levels of protein and polyunsaturated fatty acids than those of the giant river prawn, which shows its potential for aquaculture.
Resumo:
The implementation of a hypothetical aquaculture facility with hatchery, nursery and grow-out earthen ponds for raising the Amazon River Prawn Macrobrachium amazonicum in the Pantanal was considered. Eight larviculture cycles per year were projected: four to produce post-larvae for stocking in grow-out bait ponds, and four to stock nursery tanks to sell juveniles as seed to grow-out farms, which produce prawns for human consumption. Annual production would be 146,880 dozen bait prawns and 2,938 thousand juveniles. The assumed sale prices were US$ 1.38 per dozen baits and US$ 15.39 per thousand juveniles. The net present value was US$ 555,890.79, internal rate of return was 48% per year, payback period was 2.4 years and benefit-cost ratio was 3.90. The breakeven price to cover total costs per dozen baits was US$ 0.70 and per thousand juveniles was US$ 17.00, indicating that the selling price assumed for juveniles in base scenario is not realistic. Net return was US$ 84,773.80. The results indicate that this activity would be a lucrative and attractive investment in the Pantanal.
Histoarchitectural Features of the Hepatopancreas of the Amazon River Prawn Macrobrachium amazonicum
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
To investigate the feeding habit of Macrobrachium amazonicum, three experiments were carried out assessing the stage at which larvae start exogenous feeding, the acceptance of inert food by different larval stages and the ratio between live and inert diet ingested by larvae at each larval stage. In the first experiment, newly hatched larvae were kept in 500-mL beakers and fed from stages I, II or III onward. Larval survival was not affected by the larval stage at which exogenous feeding started, but mean weight gain was lower when food was offered from stage III onward. In the second experiment, 60 larvae from each stage (I to IX) were fasted for 2 h and then fed on inert diet in excess. Only larvae from stage IV onward accepted this inert diet. In the last experiment, newly hatched larvae were stocked in a larviculture tank and fed daily on both Artemia nauplii and inert diet. After 15 min, food content in the digestive tract of individual larvae was analyzed under stereomicroscopy. Larvae in stage I did not feed, while live food was accepted from stage II onward and inert food from stage III onward. Larvae in stages IV, V and VI accepted both foods with no preference, while inert food was predominant in stages VII to IX In conclusion, to feed M amazonicum larvae on Artemia before stage II or on inert diet before stage IV is unnecessary. It increases production costs and may impair water quality. From stages IV to VI, feeding on Artemia and inert diet is probably necessary, while inert diet should be the main food item from stage VII onward. This schedule may optimize feeding management and production costs. (c) 2007 Elsevier B.V. All lights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study records, for the first time, the occurrence of all four male morphotypes in a population of Macrobrachium amazonicum from a continental environment, with an entirely freshwater life cycle. The specimens studied came from the Tietê River, state of São Paulo, Brazil, and were collected in a lotic environment downstream from Ibitinga Dam. This population was compared with other continental populations, including a population from the dam itself, collected in a previous study. Four samples of 30 minutes were taken monthly, using a trap, from January to April 2011. Each male specimen was measured with respect to seven body dimensions as follows: carapace length (CL), right cheliped length (RCL), dactyl length (DCL), propodus length (PPL), carpus length (CRL), merus length (ML) and ischium length (IL). The relative growth was analyzed based on the change in growth patterns of certain body parts in relation to the independent variable CL. The four male morphotypes proposed for the species were found using morphological and morphometric analyses. Different biological characteristics were found between the populations studied. The male population of the lake of Ibitinga and from Pantanal presented mean sizes and number of morphotypes lower than the population studied here. These differences seem to be closely related to ecological characteristics of the environments inhabited by these populations. Our results supported the hypothesis that coastal and continental populations of M. amazonicum belong to the same species.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The effects of four light intensities (0; 2.8 +/- 0.9; 5,5 +/- 1,8 e 7,8 +/- 2,5 mu mol s(-1) m(-2), about 136.5 +/- 87.5; 273 +/- 43.8 e 390 +/- 125 lux, respectively) on survival, productivity, weight gain and larval development of Macrobrachium amazonicum were investigated. Four treatments with three replicate tanks were evaluated. Newly hatched larvae were held in black tanks (80.2 +/- 0.6 larvae L(-1)) filled with 50-L-brackish water (salinity of 10), in a recirculating system. Tanks were covered with shadow cloth allowing 35% and 70% light, respectively, to reach light intensities of 2.8 +/- 0.9 and 5.5 +/- 1.8 mu mol s(-1) m(-2) at the water surface. Complete absence of light (0 mu mol s(-1) m(-2)) was obtained covering the tanks with opaque black plastic, and full-light condition used no covering (7.8 +/- 2.5 mu mol s(-1) m(-2)). Observations showed that the survival rate was not affected by light intensity. Productivity and weight gain were higher under 7.8 +/- 2.5 mu mol s(-1) m(-2) light intensity than under 0 and 2.8 +/- 0.9 1 mu mol s(-1) m(-2) intensities (P<0.05). The larval development index was similar among the treatments under the different light intensities. However, from stage VII this index was increased slightly in the treatment under 7.8 +/- 2.5 mu mol s(-1) m(-2) light intensity. In conclusion, light intensity affects larval development of M. amazonicum. Values as high as 7.8 mu mol s(-1) m(-2) (about 390 lux) improve the larval performance by enhancing development, productivity and weight gain compared to lower values.
Resumo:
A recirculating system and a matching management schedule for small-scale freshwater prawn larviculture were described. The system comprised a 140 L larval culture tank in line with a 43 L biofilter filled with 24 L of calcareous substrate. Both the tank and biofilter were made of black colored fiberglass in a conical-cylindrical shape. The turnover rate of the water through the system was 24 times a day; water was pumped by airlift. Results of ten larvicultures showed that the system maintained temperature, dissolved oxygen, pH, salinity, ammonium and nitrite stable and suitable to Macrobrachium rosenbergii larvae. Survival and productivity varied from 60.5 to 72.4% and 37 to 72 post-larvae/L, respectively; both were compatible with results of commercial hatcheries. Therefore, this system may be very useful for research purposes or adapted for small-scale post-larvae production.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Marine biological invasions have been regarded as one of the major causes of native biodiversity loss, with shipping and aquaculture being the leading contributors for the introductions of alien species in aquatic ecosystems. In the present study, five aquatic alien species (one mollusk, three crustaceans and one fish species) were detected during dives, shore searches and from the fisheries on the coast of the Delta do Parnaiba Environmental Protection Area, in the States of Piaui and Maranhao, Northeastern Brazil. The species were the bicolor purse-oyster Isognomon bicolor, the whiteleg shrimp Litopenaeus vannamei, the giant river prawn Macrobrachium rosenbergii, the Indo-Pacific swimming crab Charybdis hellerii and, the muzzled blenny Omobranchus punctatus. Ballast water (I. bicolor, C. hellerii, and O. punctatus) and aquaculture activities (L. vannamei and M. rosenbergii) in adjacent areas are the most likely vectors of introduction. All exotic species found have potential impact risks to the environment because they are able to compete against native species for resources (food and habitat). Isognomon bicolor share the same habitat and food items with the native bivalve species of mussels and barnacles. Litopenaeus vannamei share the same habitat and food items with the native penaeids such as the pinkspot shrimp Farfantepenaeus brasiliensis, the Southern brown shrimp Farfantepenaeus subtilis, and the Southern white shrimp Litopenaeus schmitti, and in the past few years L. vannamei was responsible for a viral epidemics in the cultivation tanks that could be transmitted to native penaeid shrimps. Charybdis hellerii is also able to cause impacts on the local fisheries as the species can decrease the populations of native portunid crabs which are commercialized in the studied region. Macrobrachium rosenbergii may be sharing natural resources with the Amazon River prawn Macrobrachium amazonicum. Omobranchus punctatus shares habit with the native redlip blenny Ophioblennius atlanticus and other fishes, such as the frillfin goby Bathigobius soporator. Some immediate remedial measures to prevent further introductions from ballast water and shrimp farm ponds should be: (i) to prevent the release of ballast water by ship/vessels in the region; (ii) to reroute all effluent waters from shrimp rearing facilities through an underground or above-ground dry well; (iii) to install adequate sand and gravel filter which will allow passage of water but not livestock; (iv) outdoor shrimp pounds located on floodable land should be diked, and; (v) to promote environmental awareness of those directly involved with ballast water (crews of ship/vessels) and shrimp farms in the region. Rev. Biol. Trop. 58 (3): 909-923. Epub 2010 September 01.