43 resultados para Geometric Function Theory
Resumo:
We compute the semiclassical magnetization and susceptibility of non-interacting electrons, confined by a smooth two-dimensional potential and subjected to a uniform perpendicular magnetic field, in the general case when their classical motion is chaotic. It is demonstrated that the magnetization per particle m(B) is directly related to the staircase function N(E), which counts the single-particle levels up to energy E. Using Gutzwiller's trace formula for N, we derive a semiclassical expression for m. Our results show that the magnetization has a non-zero average, which arises from quantum corrections to the leading-order Weyl approximation to the mean staircase and which is independent of whether the classical motion is chaotic or not. Fluctuations about the average are due to classical periodic orbits and do represent a signature of chaos. This behaviour is confirmed by numerical computations for a specific system.
Resumo:
Motivated by the recent solution of Karlin's conjecture, properties of functions in the Laguerre-Polya class are investigated. The main result of this paper establishes new moment inequalities fur a class of entire functions represented by Fourier transforms. The paper concludes with several conjectures and open problems involving the Laguerre-Polya class and the Riemann xi -function.
Resumo:
Perhaps one of the main features of Einstein's General Theory of Relativity is that spacetime is not flat itself but curved. Nowadays, however, many of the unifying theories like superstrings on even alternative gravity theories such as teleparalell geometric theories assume flat spacetime for their calculations. This article, an extended account of an earlier author's contribution, it is assumed a curved group manifold as a geometrical background from which a Lagrangian for a supersymmetric N = 2, d = 5 Yang-Mills - SYM, N = 2, d = 5 - is built up. The spacetime is a hypersurface embedded in this geometrical scenario, and the geometrical action here obtained can be readily coupled to the five-dimensional supergravity action. The essential idea that underlies this work has its roots in the Einstein-Cartan formulation of gravity and in the 'group manifold approach to gravity and supergravity theories'. The group SYM, N = 2, d = 5, turns out to be the direct product of supergravity and a general gauge group g: G = g circle times <(SU(2, 2/1))over bar>.
Resumo:
Our objective in this paper is to prove an Implicit Function Theorem for general topological spaces. As a consequence, we show that, under certain conditions, the set of the invertible elements of a topological monoid X is an open topological group in X and we use the classical topological group theory to conclude that this set is a Lie group.
Resumo:
In Bayesian Inference it is often desirable to have a posterior density reflecting mainly the information from sample data. To achieve this purpose it is important to employ prior densities which add little information to the sample. We have in the literature many such prior densities, for example, Jeffreys (1967), Lindley (1956); (1961), Hartigan (1964), Bernardo (1979), Zellner (1984), Tibshirani (1989), etc. In the present article, we compare the posterior densities of the reliability function by using Jeffreys, the maximal data information (Zellner, 1984), Tibshirani's, and reference priors for the reliability function R(t) in a Weibull distribution.
Resumo:
We defined generalized Heaviside functions for a variable x in R-n, and for variables (x, t) in R-n x R-m. Then study properties such as: composition, invertibility, and association relation (the weak equality). This work is developed in the Colombeau generalized functions context.
Resumo:
We evaluate the one-loop fermion self-energy for the gauged Thirring model in (2+1) dimensions. with one massive fermion flavor. We do this in the framework of the causal perturbation theory. In contrast to QED3, the corresponding two-point function turns out to be infrared finite on the mass shell. Then, by means of a Ward identity, we derive the on-shell vertex correction and discuss the role played by causality for non-renormalizable theories.
Resumo:
In Colombeau's theory, given an open subset Ω of ℝn, there is a differential algebra G(Ω) of generalized functions which contains in a natural way the space D′(Ω) of distributions as a vector subspace. There is also a simpler version of the algebra G,(Ω). Although this subalgebra does not contain, in canonical way, the space D′(Ω) is enough for most applications. This work is developed in the simplified generalized functions framework. In several applications it is necessary to compute higher intrinsic derivatives of generalized functions, and since these derivatives are multilinear maps, it is necessary to define the space of generalized functions in Banach spaces. In this article we introduce the composite function for a special class of generalized mappings (defined in open subsets of Banach spaces with values in Banach spaces) and we compute the higher intrinsic derivative of this composite function.
Resumo:
We use the black hole entropy function to study the effect of Born-Infeld terms on the entropy of extremal black holes in heterotic string theory in four dimensions. We find, that after adding a set of higher curvature terms to the effective action, attractor mechanism, works and Born-Infeld terms contribute to the stretching of near horizon geometry. In the α′ → 0 limit, the solutions of attractor equations for moduli, fields and the resulting entropy, are in conformity with the ones for standard two charge black holes.
Resumo:
We have analyzed the null-plane canonical structure of Podolsky's electromagnetic theory. As a theory that contains higher order derivatives in the Lagrangian function, it was necessary to redefine the canonical momenta related to the field variables. We were able to find a set of first and second-class constraints, and also to derive the field equations of the system. Copyright © owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence.
Resumo:
The objective of this paper is to show a methodology to estimate the longitudinal parameters of transmission lines. The method is based on the modal analysis theory and developed from the currents and voltages measured at the sending and receiving ends of the line. Another proposal is to estimate the line impedance in function of the real-time load apparent power and power factor. The procedure is applied for a non-transposed 440 kV three-phase line. © 2011 IEEE.
Resumo:
The performance of advanced electronic ceramics is directly related to the synthesis route employed. Sol-gel methods are widely used for this purpose. However, the physicochemical intermediate steps are still not well understood. Better understanding and control of these processes can improve the final quality of samples. In this work, we studied theoretically the formation of metal complexes between citric acid and lithium or barium metal cations with different citric acid/metal proportions, using Density Functional Theory electronic structure calculations. Infrared and Raman scattering spectra were simulated for the more stable geometric configurations. Using this methodology, we identified some features of complexes formed in the synthesis process. Our results show that the complexes can be distinguished by changes in the bands assigned to C=O, COH-, and COO- group vibrations. An estimate of the most stable complexes is made based on total energy.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)