24 resultados para Genetically selected mice
Resumo:
Strains of mice with maximal and minimal acute inflammatory responsiveness (AIRmax and AIRmin, respectively) were developed through selective breeding based on their high- or low-acute inflammatory responsiveness. Previous reports have shown that AIRmax mice are more resistant to the development of a variety of tumours than AIRmin mice, including spontaneous metastasis of murine melanoma. Natural killer activity is involved in immunosurveillance against tumour development, so we analysed the number and activity of natural killer cells (CD49b(+)), T-lymphocyte subsets and in vitro cytokine production by spleen cells of normal AIRmax and AIRmin mice. Analysis of lymphocyte subsets by flow cytometry showed that AIRmax mice had a higher relative number of CD49b(+) cells than AIRmin mice, as well as cytolytic activity against Yac.1 target cells. The number of CD3(+) CD8(+) cells was also higher in AIRmax mice. These findings were associated with the ability of spleen cells from AIRmax mice in vitro to produce higher levels of the pro-inflammatory cytokines tumour necrosis factor-alpha, interleukin-12p40 and interferon-gamma but not the anti-inflammatory interleukin-10. Taken together, our data suggest that the selective breeding to achieve the AIRmax and AIRmin strains was able to polarize the genes associated with cytotoxic activity, which can be responsible for the antitumour resistance observed in AIRmax mice.
Resumo:
Mycoplasma ovis is a hemoplasma that may cause anemia and mortality in small ruminants. Our aim was to determine whether M. ovis infects populations of free-ranging deer in Brazil. Bully coat samples from 64 Blastocerus dichotomus from Porto Primavera, 18 Ozotocerus bezoarticus from Pantanal, and 21 O. bezoarticus from Emas National Park were tested. Using a M. ovis PCR protocol to amplify extracted DNA, 46/64 (72%) of deer froth Porto Primavera, 10/18 (56%) from Pantanal, and 4/21 (19%) from Emas National Park were positive, giving an overall positive rate of 58% for hemoplasma in these wild deer. Sequencing and phylogenetic analysis of the 168 rRNA gene revealed 3 genetically distinct hemoplasmas including M. ovis, 'Candidatus Mycoplasma erythrocervae', and a hemoplasma most closely related to M. ovis. Phylogenetic analysis of the 23S rRNA gene from selected sequences confirmed these relationships.
Resumo:
High (H) and low (L) responder mice were selected for their ability to produce antibodies against sheep and human erythrocytes (Selection IV-A). In this selection, the difference in antibody responsiveness between H and L lines (HIV-A and LIV-A mice, respectively) was shown to depend mainly on macrophage function. The more rapid catabolism of antigens by macrophages in L mice has been suggested as the main cause of the low antibody production. Due to this high macrophage activity, L animals have been described as more resistant than H animals to intracellular pathogens. These animals were utilized as an experimental model of paracoccidioidomycosis. HIV-A and LIV-A mice were infected with Paracoccidioides brasiliensis by the intravenous route. As expected, H mice were more susceptible to P. brasiliensis with a shorter survival time and higher levels of specific antibodies when compared to L mice. Contrasting with the survival time, the lungs, spleen and liver from H mice showed typical nodular granulomas containing epithelioid and giant cells and few fungi. on the other hand, in LN-A mice, the lesions of these organs were characterized by looser granulomas with irregular borders and the presence of a large number of fungi, However, the adrenal gland showed different lesion patterns. In H mice these lesions were extensive and characterized by loose granulomas with numerous fungi, while in LIV-A mice the lesions were small and limited to the cortex. Moreover the HIV-A mice presented higher levels of serum corticosterone when compared to LIV-A ones. The higher susceptibility of H mice could be attributed to the extensive lesions of the adrenal glands. These results suggest the use of the H line from the IV-A Selection as an experimental model for further studies of adrenal involvement in paracoccidioidomycosis.
Resumo:
Randomly amplified polymorphic DNA (RAPD) analysis of 35 Paracoccidioides brasiliensis isolates was carried out to evaluate the correlation of RAPD profiles with the virulence degree or the type of the clinical manifestations of human paracoccidioidomycosis. The dendrogram presented two main groups sharing 64% genetic similarity. Group A included two isolates from patients with chronic paracoccidioidomycosis; group B comprised the following isolates showing 65% similarity: two non-virulent, six attenuated, five virulent, eight from patients with chronic paracoccidioidomycosis and two from patients with acute paracoccidioidomycosis. The virulent Pb18 isolate and six attenuated or non-virulent samples derived from it were genetically indistinguishable (100% of similarity). Thus, in our study, RAPD patterns could not discriminate among 35 P. brasiliensis isolates according to their differences either in the degree of virulence or in the type of the clinical manifestation of this fungal infection. © 2002 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
Resumo:
To examine the evolution of endurance-exercise behaviour, we have selectively bred four replicate lines of laboratory mice (Mus domesticus) for high voluntary wheel running ('high runner' or HR lines), while also maintaining four non-selected control (C) lines. By generation 16, HR mice ran ∼2.7-fold more than C mice, mainly by running faster (especially in females), a differential maintained through subsequent generations, suggesting an evolutionary limit of unknown origin. We hypothesized that HR mice would have higher glycogen levels before nightly running, show greater depletion of those depots during their more intense wheel running, and have increased glycogen synthase activity and GLUT-4 protein in skeletal muscle. We sampled females from generation 35 at three times (photophase 07:00 h-19:00 h) during days 5-6 of wheel access, as in the routine selection protocol: Group 1, day 5, 16:00 h-17:30 h, wheels blocked from 13:00 h; Group 2, day 6, 02:00 h-03:30 h (immediately after peak running); and Group 3, day 6, 07:00 h-08:30 h. An additional Group 4, sampled 16:00 h-17:30 h, never had wheels. HR individuals with the mini-muscle phenotype (50% reduced hindlimb muscle mass) were distinguished for statistical analyses comparing C, HR normal, and HR mini. HR mini ran more than HR normal, and at higher speeds, which might explain why they have been favored by the selective-breeding protocol. Plasma glucose was higher in Group 1 than in Group 4, indicating a training effect (phenotypic plasticity). Without wheels, no differences in gastrocnemius GLUT-4 were observed. After 5 days with wheels, all mice showed elevated GLUT-4, but HR normal and mini were 2.5-fold higher than C. At all times and irrespective of wheel access, HR mini showed approximately three-fold higher [glycogen] in gastrocnemius and altered glycogen synthase activity. HR mini also showed elevated glycogen in soleus when sampled during peak running. All mice showed some glycogen depletion during nightly wheel running, in muscles and/or liver, but the magnitude of this depletion was not large and hence does not seem to be limiting to the evolution of even-higher wheel running.
Resumo:
Paracoccidioidomycosis is a human systemic mycosis caused by the fungus Paracoccidioides brasiliensis. The mechanisms involved in innate immune response to this fungus are not fully elucidated. Leukotrienes are known to be critical for the clearance of various microorganisms, mainly by mediating the microbicidal function of phagocytes. We investigated the involvement of leukotriene B4 in the early stages of experimental paracoccidioidomycosis, which was induced by intratracheal inoculation of the fungus in selected mouse lines. The mouse lines utilized were produced through bi-directional phenotypic selection, endowed with maximal or minimal acute inflammatory reactivity, and designated AIRmax and AIRmin, respectively. AIRmax mice were more resistant to the infection, which was demonstrated by reduced lung fungal loads. However, the two lines produced similar amounts of leukotriene B4, and pharmacological inhibition of this mediator provoked similar fungal load increases in the two lines. The lower fungal load in the AIRmax mice was associated with a more effective inflammatory response, which was characterized by enhanced recruitment and activation of phagocytic cells and an increased production of activator cytokines. This process resulted in an increased release of fungicidal molecules and a diminution of fungal load. In both lines, leukotriene production was associated with a protective response in the lung that was consequent to the effect of this eicosanoid on the influx and activation of phagocytes. © 2013 ISHAM.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)