158 resultados para Gases, Asphyxiating and poisonous
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
To evaluate the participation of the larynx and cervical trachea in conditioning inspired gases, we randomly allocated 16 mixed-breed dogs to two groups: group TT (tracheal tube; n = 8) and group LMA (laryngeal mask airway; n = 8). The dogs were anesthetized with pentobarbital sodium and mechanically ventilated for 3 hours. The parameters studied were temperature and absolute humidities of ambient, inhaled, and tracheal air. There was a small increase in tracheal air temperature compared to inhaled air temperature, but no significant difference between groups. The absolute humidity of tracheal air was greater in group LMA than in group TT (23 mg H2O center dot L-1 and 14 mg H2O center dot L-1, respectively; p < .0001). The difference in absolute humidity between the tracheal air and the inhaled air was higher in group LMA at all times (p < .0001). We conclude that the larynx and cervical trachea of the dog participate in humidification and heating of inhaled air by means of air contact with mucosa in this airway segment.
Resumo:
The effects of temperature on lung and blood gases were measured in the South American rattlesnake (Crotalus durissus terrificus). Arterial blood and lung gas samples were obtained from chronically cannulated animals at 15, 25, and 35 degrees C. As expected for reptiles, arterial pH fell with increased temperature (0.018 U degrees C-1 between 15 and 25 degrees C and 0.011 U degrees C-1 between 25 and 35 degrees C) while lung gas PCO2 rose from 5.8 mmHg at 15 degrees C to 13.2 mmHg at 35 degrees C. Concurrently, lung gas PO2 declined from 132 mmHg at 15 degrees C to 120 mmHg at 35 degrees C, and arterial PO2 increased from 33 to 76 mmHg in that temperature range. Arterial haemoglobin O-2 saturation rose from 0.53 at 15 degrees C to 0.83 at 25 degrees C but became slightly reduced (0.77) with a further elevation of temperature to 35 degrees C. Arterial haemoglobin concentration increased from 1.96 to 2.53 mM between 15 and 35 degrees C, consistent with higher demands on oxygen delivery to tissues at elevated temperatures. Moreover, the substantial increase of haemoglobin O-2 saturation between 15 and 25 degrees C conforms to the idea that reduction of the central vascular right-to-left shunt (pulmonary bypass of systemic venous return) is associated with high metabolic demands. (C) 1998 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We show that self-localized ground states can be created in the spin-balanced gas of fermions with repulsion between the spin components, whose strength grows from the center to periphery, in combination with the harmonic-oscillator (HO) trapping potential acting in one or two transverse directions. We also consider the ground state in the noninteracting Fermi gas under the action of the spatially growing tightness of the one- or two-dimensional (1D or 2D) HO confinement. These settings are considered in the framework of the Thomas-Fermi-von Weizsäcker (TF-vW) density functional. It is found that the vW correction to the simple TF approximation (the gradient term) is nearly negligible in all situations. The properties of the ground state under the action of the 2D and 1D HO confinement with the tightness growing in the transverse directions are investigated too for the Bose-Einstein condensate with the self-repulsive nonlinearity. © 2013 American Physical Society.
Resumo:
Trapped degenerate dipolar Bose and Fermi gases of the cylindrical symmetry with the polarization vector along the symmetry axis are only stable for the strength of dipolar interaction below a critical value. In the case of bosons, the stability of such a dipolar Bose-Einstein condensate (BEC) is investigated for different strengths of contact and dipolar interactions using a variational approximation and a numerical solution of a mean-field model. In the disc shape, with the polarization vector perpendicular to the plane of the disc, the atoms experience an overall dipolar repulsion and this fact should contribute to the stability. However, a complete numerical solution of the dynamics leads to the collapse of a strongly disc-shaped dipolar BEC due to the long-range anisotropic dipolar interaction. In the case of fermions, the stability of a trapped single-component degenerate dipolar Fermi gas is studied including the Hartree-Fock exchange and Brueckner-Goldstone correlation energies in the local-density approximation valid for a large number of atoms. Estimates for the maximum allowed number of polar Bose and Fermi molecules in the BEC and degenerate Fermi gas are given. © 2013 IOP Publishing Ltd.
Resumo:
Experiments of biomass combustion were performed to determine whether specimen size, tray inclination, or combustion air flow rate was the factor that most affects the emission of carbon dioxide, carbon monoxide, and methane. The chosen biomass was Eucalyptus citriodora, a very abundant species in Brazil, utilized in many industrial applications, including combustion for energy generation. Analyses by gas chromatograph and specific online instruments were used to determine the concentrations of the main emitted gases, and the following figures were found for the emission factors: 1400 ± 101 g kg-1 of CO2, 50 ± 13 g kg-1 of CO, and 3.2 ± 0.5 g kg-1 of CH4, which agree with values published in the literature for biomass from the Amazon rainforest. Statistical analysis of the experiments determined that specimen size most significantly affected the emission of gases, especially CO2 and CO. •Statistical analysis to determine effects on emission factors.•CO2, CO, CH4 emission factors determined for combustion of Eucalyptus.•Laboratory results agreed with data for Amazonian biomass combustion in field tests.•Combustion behavior under flaming and smoldering was analyzed. © 2013 Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
PURPOSE:To investigate the effects of occupational exposure to waste anesthetic gases on genetic material and antioxidant status in professionals during their medical residency. METHODS:The study group consisted of 15 medical residents from Anesthesiology and Surgery areas, of both genders, mainly exposed to isoflurane and to a lesser degree to sevoflurane and nitrous oxide; the control group consisted of 15 young adults not exposed to anesthetics. Blood samples were drawn from professionals during medical residency (eight, 16 and 22 months of exposure to waste anesthetic gases). DNA damage was evaluated by comet assay, and antioxidant defense was assessed by total thiols and the enzymes glutathione peroxidase (GPX), superoxide dismutase (SOD) and catalase (CAT). RESULTS:When comparing the two groups, DNA damage was significantly increased at all time points evaluated in the exposed group; plasma thiols increased at 22 months of exposure and GPX was higher at 16 and 22 months of exposure. CONCLUSION:Young professionals exposed to waste anesthetic gases in operating rooms without adequate scavenging system have increased DNA damage and changes in redox status during medical residency. There is a need to minimize exposure to inhalation anesthetics and to provide better work conditions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Estudaram-se as alterações nos eletrólitos, nos gases sanguíneos, na osmolalidade, no hematócrito, na hemoglobina, nas bases tituláveis e no anion gap no sangue venoso de 11 equinos da raça Puro Sangue Árabe, destreinados, submetidos a exercício máximo e submáximo em esteira rolante. Esses animais passaram por período de três dias de adaptação à esteira rolante e posteriormente realizaram dois exercícios testes, um de curta e outro de longa duração. Foram coletadas amostras de sangue venoso antes, imediatamente após e 30 minutos após o término dos exercícios. Após a realização do exercício máximo, observou-se diminuição significativa no pHv, na PvCO2, no HCO3, na cBase além de elevação no AG. Detectou-se também aumento do K+, do Ht e da Hb. Ao final do exercício submáximo, constatou-se somente aumento significativo no pHv, na cBase, na SatvO2 e na PvO2. Conclui-se que os equinos submetidos a exercício máximo desenvolveram acidose metabólica e alcalose respiratória compensatória, hipercalemia e aumento nos valores de hematócrito e hemoglobina. No exercício submáximo, os animais apresentaram alcalose metabólica hipoclorêmica e não ocorreram alterações no equilíbrio hidroeletrolítico.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)