47 resultados para Galois Cohomology
Resumo:
By replacing ten-dimensional pure spinors with eleven-dimensional pure spinors, the formalism recently developed for covariantly quantizing the d = 10 superparticle and superstring is extended to the d = 11 superparticle and supermembrane. In this formalism, kappa symmetry is replaced by a BRST-like invariance using the nilpotent operator Q = ∮ λ αdα where dα is the worldvolume variable corresponding to the d = 11 spacetime supersymmetric derivative and λα is an SO(10, 1) pure spinor variable satisfying λΓcλ = 0 for c = 1 to 11. Super-Poincaré covariant unintegrated and integrated supermembrane vertex operators are explicitly constructed which are in the cohomology of Q. After double-dimensional reduction of the eleventh dimension, these vertex operators are related to type-IIA superstring vertex operators where Q = QL + QR is the sum of the left and right-moving type-IIA BRST operators and the eleventh component of the pure spinor constraint, λΓ 11λ = 0, replaces the bL 0 - b R 0 constraint of the closed superstring. A conjecture is made for the computation of M-theory scattering amplitudes using these supermembrane vertex operators. © SISSA/ISAS 2002.
Resumo:
Using arguments based on BRST cohomology, the pure spinor formalism for the superstring in an AdS 5×S 5 background is proven to be BRST invariant and conformally invariant at the quantum level to all orders in perturbation theory. Cohomology arguments are also used to prove the existence of an infinite set of non-local BRST-invariant charges at the quantum level. © SISSA 2005.
Resumo:
Bieri-Eckmann [6] introduced the concept of relative cohomology for a group pair (G, S), where G is a group and S is a family of subgroups of G and, by using that theory, they introduced the concept of Poincaré duality pairs (G, S) and provided a topological interpretation for such pairs through Eilenberg-MacLane pairs K(G, S, 1). A Poincaré duality pair is a pair (G, S) that satisfies two isomorphisms, one between absolute cohomology and relative homology and the second between relative cohomology and absolute homology. In this paper, we present a proof that those two isomorphisms are equivalent. We also present some calculations on duality pairs by using the cohomological invariant defined in [1] and studied in [2-4]. © 2012 Pushpa PublishingHouse.
Resumo:
Riemann surfaces, cohomology and homology groups, Cartan's spinors and triality, octonionic projective geometry, are all well supported by Complex Structures [1], [2], [3], [4]. Furthermore, in Theoretical Physics, mainly in General Relativity, Supersymmetry and Particle Physics, Complex Theory Plays a Key Role [5], [6], [7], [8]. In this context it is expected that generalizations of concepts and main results from the Classical Complex Theory, like conformal and quasiconformal mappings [9], [10] in both quaternionic and octonionic algebra, may be useful for other fields of research, as for graphical computing enviromment [11]. In this Note, following recent works by the autors [12], [13], the Cauchy Theorem will be extended for Octonions in an analogous way that it has recentely been made for quaternions [14]. Finally, will be given an octonionic treatment of the wave equation, which means a wave produced by a hyper-string with initial conditions similar to the one-dimensional case.
Resumo:
On-shell supergravity vertex operators in an AdS 5 × S 5 background are described in the pure spinor formalism by the zero mode cohomology of a BRST operator. After expanding the pure spinor BRST operator in terms of the AdS 5 radius variable, this cohomology is computed using $ \mathcal{N}=4 $ harmonic superspace variables and explicit super-field expressions are obtained for the behavior of supergravity vertex operators near the boundary of AdS 5. © 2013 SISSA, Trieste, Italy.
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
Pós-graduação em Matemática Universitária - IGCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Pós-graduação em Matemática - IBILCE