89 resultados para Gabriella de Lucca


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ESR spectra of spin probes were used to monitor lipid-protein interactions in native and cholesterol-enriched microsomal membranes. In both systems composite spectra were obtained, one characteristic of bulk bilayer organization and another due to a motionally restricted population, which was ascribed to lipids in a protein microenvironment. Computer spectral subtractions revealed that cholesterol modulates the order/mobility of both populations in opposite ways, i.e., while the lipid bilayer region gives rise to more anisotropic spectra upon cholesterol enrichment, the spectra of the motionally restricted population become indicative of increased mobility and/or decreased order. These events were evidenced by measurement of both effective order parameters and correlation times. The percentages of the motionally restricted component were invariant in native and cholesterol-enriched microsomes. Variable temperature studies also indicated a lack of variation of the percentages of both spectral components, suggesting that the motionally restricted one was not due to protein aggregation. The results correlate well with the effect of cholesterol enrichment on membrane-bound enzyme kinetics and on the behavior of fluorescent probes [Castuma & Brenner (1986) Biochemistry 25, 4733-4738]. Several hypothesis are put forward to explain the molecular mechanism of the cholesterol-induced spectral changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alcohol dehydrogenases (ADHs) are oxidoreductases present in animal tissues, plants, and microorganisms. These enzymes attract major scientific interest for the evolutionary perspectives, afforded by their wide occurrence in nature, and for their use in synthesis, thanks to their broad substrate specificity and stereoselectivity. In the present study, the standardization of the activity of the alcohol dehydrogenase from baker's yeast was accomplished, and the pH and temperature stability showed, that the enzyme presented a high stability to pH 6.0-7.0 and the thermal stability were completely maintained up to 50 degrees C during 1 h. The assays of ethanol (detection range 1-5 mM or 4.6 x 10(-2) to 23.0 x 10(-2) g/L) in different samples in alcoholic beverages, presented a maximum deviation of only 7.2%. The standard curve and the analytic curve of this method meet the conditions of precision, sensitivity, simplicity, and low cost, required for a useable analytical method. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The compound [Pd(dmba)(NCO)(imz)] (dmba = N,N-dimethylbenzilamine; NCO = cyanate; imz = imidazole) was studied through experimental and theoretical methods. The complex was synthesized and characterized by IR and NMR spectroscopy. To an appropriate representation of the molecular environment, Gaussian basis sets for the constituent atoms of the compound were built and, after adequate supplementation with polarization and diffuse functions, they were used to study the molecule. Calculations of electronic and vibrational structure of two possible isomers were carried out, showing that the compound, which contains the NCO GROUP trans to the Pd-C bond, is 4.29 kcal/mol more stable than the analogous one, where the imz ligand is trans to the Pd-C bond. The calculated molecular parameters, bond distances, and bond angles showed that the geometry around the metallic center is square-planar with the cyanate being linear. The theoretical infrared spectrum of C(1) symmetry (electronic state (1)A) is in accordance with the experimental one. It also verified the contribution of Pd (4d(xz) + 4d(yz)) and Pd (4d(xy)) in the HOMO and LUMO orbitals, respectively. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study describes a methodology of dosage of glycerol kinase (GK) from baker's yeast. The standardization of the activity of the glycerol kinase from baker's yeast was accomplished using the diluted enzymatic preparation containing glycerol phosphate oxidase (GPO) and glycerol kinase. The mixture was incubated at 60 degrees C by 15 min and the reaction was stopped by the SDS solution addition. A first set of experiments was carried out in order to investigate the individual effect of temperature (7), pH and substrate concentration (S), on GK activity and stability. The pH and temperature stability tests showed that the enzyme presented a high stability to pH 6.0-8.0 and the thermal stability were completely maintained up to 50 degrees C during 1 h. The K(m) of the enzyme for glycerol was calculated to be 2 mM and V(max) to be 1.15 U/mL. In addition, modeling and optimization of reaction conditions was attempted by response surface methodology (RSM). Higher activity values will be attained at temperatures between 52 and 56 degrees C, pH around 10.2-10.5 and substrate concentrations from 150 to 170 mM.This low cost method for glycerol kinase dosage in a sequence of reactions is of great importance for many industries, like food, sugar and alcohol. RSM showed to be an adequate approach for modeling the reaction and optimization of reaction conditions to maximize glycerol kinase activity. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The cyanate-bridged cyclopalladated compound [Pd(C(2),N-dmba)(mu-NCO)](2) (dmba=N,N-dimethylbenzylamine) reacts in acetone with pyrazole (pz), 3,5-dimethylpyrazole (dmpz), imidazole (imz) and 2-methylimidazole (mimz) to give [Pd(2)(C(2),N-dmba)(2)(mu-NCO)(mu-pz)] (1), [Pd(2)(C(2),N-dmba)(2)(mu-NCO)(mu-dmpz)] (2), [Pd(C(2),N-dmba)(NCO)(imz)] (3) and [Pd(C(2),N-dmba)(NCO)(mimz)] (4), respectively. The compounds were characterized by elemental analysis, IR spectroscopy and TG. The thermal decomposition of the compounds occurs in three consecutive steps and the final decomposition products were identified as Pd(0) by X-ray powder diffraction. The thermal stability order of the complexes is 2 > 3 > 1 > 4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Since ancient times, the utilization of yeasts by the man has a great impact on the socio-economic development. After the advent of the technology of recombinant DNA, great advances have occurred due to the acquisition of strains of mutant yeasts in the field of applied research, and Saccharomyces cerevisiae has soon been outstanding as an interesting candidate for the expression of heterologous proteins of biotechnological interest. As the time goes by other alternative systems of expression have been shown because they have advantages over Saccharomyces cerevisiae. Among those new systems, Pichia pastoris is outstanding as methylotrophic yeast capable of growing in a culture medium containing methanol as the only source of carbon and energy. The induction of production of glycerol-3-phosphate dehydrogenase (GPD, NAD(+): oxido-redutase EC 1.1. 1.8) by Pichia pastoris was accomplished in the medium containing methanol. One of the most important key parameters in Pichia pastoris expression system is the methanol concentration. Bibliographic reviews on the Pichia pastoris production system have shown that the best culture conditions vary according to the strain used and/or kind of heterologous protein desired to be expressed. Therefore, we have sought to develop a system, involving expression of glycerol-3-phosphate dehydrogenase in the yeast Pichia pastoris, for generating sufficient quantities of the enzyme in order to asses its potential value for use in various food bioanalytical determination. Dehydrogenases have been widely used in the enzymatic assays of diverse composites of industrial interest, being enclosed among them glycerol and a number of important bioanalytical applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The glycerophosphate oxidase is a flavoprotein responsible for the catalysis of the oxidation of the glycerophosphate to dihydroxyacetone phosphate, through the reduction of the oxygen to hydrogen peroxide. The glycerophosphate oxidase from baker's yeast was specific for L-alpha-glycerol phosphate. It was estimated by monitoring the consumption of oxygen with an oxygraph. An increase of 32% in consumption of oxygen was obtained when the enzyme was concentrated 16-fold. The assay of enzyme was determined by the peroxidase chromogen method followed at 500 nm. The procedure for the standardization of the activity of the glycerophosphate oxidase from baker's yeast was accomplished, and the pH and temperature stability showed that the enzyme presented a high stability at pH 8.0, and the thermal stability was maintained up to 60 degrees C during I h. Such method allowed quantifying in the range 92-230 mM of glycerol phosphate, an important intermediate metabolite from lipid biosynthesis and glycolytic routes. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis of polygalacturonases (PG) is known to be influenced by Aspergillus growth conditions, namely, environmental factors and pectin content in the cultivation medium containing a mixed carbon source. Optimal conditions were attained at a temperature of 30 A degrees C and an initial pH of 4.5. PG activity (3.29 and 2.48 U/mL) was determined after a two-day culture of Aspergillus sp. HC1 and Aspergillus sp. CC1, respectively, in a basic medium containing 2% citrus pectin as the sole carbon source. The addition of glucose (2% w/v) to the basic medium led to a 2-fold increase in PG production. However, enzyme synthesis was repressed when a higher concentration of glucose was used in the medium containing the mixed carbon source. Spores from the two fungi were immobilized in a 3% Ca-alginate system and the mechanical strength of the gel beads allowed the use of this process system 6-fold longer (288 h) than the free culture. In the Aspergillus sp. CC1 immobilized system, PG production increased nearly 10-fold in the medium with 2% glucose added (5.95 U/mL) in comparison to the medium without sugar (0.55 U/mL). The results demonstrate that a different response in activity was produced by free and entrapped spore systems. PG production remained approximately constant throughout the six 48 h cycles in the medium containing citrus pectin (2% w/v) as the sole carbon source.