34 resultados para GEODESY
Resumo:
The mathematical fundamentals involved in the realization of a high precision reference system, taking into account solutions from VLBI, SLR, GPS and DORIS are presented. Each individual solution has its own deficiencies in providing a global reference system. But combining all solutions together, and by the introduction of the no net rotation condition (NNR), a solution that reflects the nowadays precision of the available spatial techniques for the determination of position and velocity of stations located on the Earth crust is obtained. Whilst the origin is provided by SLR, the scale is introduced by SLR and VLBI. The orientation and its temporal evolution are introduced via internal constraints, in accordance with the NNR condition.
Resumo:
The GPS observables are subject to several errors. Among them, the systematic ones have great impact, because they degrade the accuracy of the accomplished positioning. These errors are those related, mainly, to GPS satellites orbits, multipath and atmospheric effects. Lately, a method has been suggested to mitigate these errors: the semiparametric model and the penalised least squares technique (PLS). In this method, the errors are modeled as functions varying smoothly in time. It is like to change the stochastic model, in which the errors functions are incorporated, the results obtained are similar to those in which the functional model is changed. As a result, the ambiguities and the station coordinates are estimated with better reliability and accuracy than the conventional least square method (CLS). In general, the solution requires a shorter data interval, minimizing costs. The method performance was analyzed in two experiments, using data from single frequency receivers. The first one was accomplished with a short baseline, where the main error was the multipath. In the second experiment, a baseline of 102 km was used. In this case, the predominant errors were due to the ionosphere and troposphere refraction. In the first experiment, using 5 minutes of data collection, the largest coordinates discrepancies in relation to the ground truth reached 1.6 cm and 3.3 cm in h coordinate for PLS and the CLS, respectively, in the second one, also using 5 minutes of data, the discrepancies were 27 cm in h for the PLS and 175 cm in h for the CLS. In these tests, it was also possible to verify a considerable improvement in the ambiguities resolution using the PLS in relation to the CLS, with a reduced data collection time interval. © Springer-Verlag Berlin Heidelberg 2007.
Resumo:
Integer carrier phase ambiguity resolution is the key to rapid and high-precision global navigation satellite system (GNSS) positioning and navigation. As important as the integer ambiguity estimation, it is the validation of the solution, because, even when one uses an optimal, or close to optimal, integer ambiguity estimator, unacceptable integer solution can still be obtained. This can happen, for example, when the data are degraded by multipath effects, which affect the real-valued float ambiguity solution, conducting to an incorrect integer (fixed) ambiguity solution. Thus, it is important to use a statistic test that has a correct theoretical and probabilistic base, which has became possible by using the Ratio Test Integer Aperture (RTIA) estimator. The properties and underlying concept of this statistic test are shortly described. An experiment was performed using data with and without multipath. Reflector objects were placed surrounding the receiver antenna aiming to cause multipath. A method based on multiresolution analysis by wavelet transform is used to reduce the multipath of the GPS double difference (DDs) observations. So, the objective of this paper is to compare the ambiguity resolution and validation using data from these two situations: data with multipath and with multipath reduced by wavelets. Additionally, the accuracy of the estimated coordinates is also assessed by comparing with the ground truth coordinates, which were estimated using data without multipath effects. The success and fail probabilities of the RTIA were, in general, coherent and showed the efficiency and the reliability of this statistic test. After multipath mitigation, ambiguity resolution becomes more reliable and the coordinates more precise. © Springer-Verlag Berlin Heidelberg 2007.
Resumo:
The aim of this present work was to compare planialtimetric charts obtained from different risings using two different theodolite types, a total station, and a precision level, used as control. Using a total station, an area was marked with clear variations of relief, following a grid, with a distance of 20 meters among stakes. After that, the stakes were read by the total station and two theodolites of different precisions. The geometric leveling was done by a precision level. The data were input in the DataGeosis software and the numerical modelling of the land was made with mesh of maximum rigidity, generating planialtimetric representation for each rising. It was verified, through comparison of the four representations that little variations occur in relation to the control. The closest representation of the control was the planialtimetry based on the data from the total station, in which the representations obtained from the theodolites were identical among themselves. It was concluded that in the process of obtaining detailed planialtimetry of small areas, submitted to the grid, it was not necessary to use composed geometric leveling, reducing work to the exclusive use of a total station or conventional theodolite.
Resumo:
The objective of this work was to implant a geodesic pillar in the campus of Botucatu (Rubião Júnior) of the São Paulo State University (UNESP), using active stations of the Brazilian Net of Continuous Monitoring (RBMC) as reference, aiming at inclusion in the Brazilian Geodesic System (BGS). In the planning of the trace, some aspects of the pillar optimization were considered: the field evaluation, the equipment Receiver GPS Topcon Hiper GGD and the net RBMC were used to trace the height, and the Topcon Tools 6.04 version software was use for the data processing, the ambiguity solution, as well as the treatment of injunctions during the column adjustment. The obtained results allowed the implantation of a more accurate pillar then 1ppm compatible to the RBMC net, meeting the specification of IBGE.
Resumo:
To ensure high accuracy results from GPS relative positioning, the multipath effects have to be mitigated. Although the careful selection of antenna site and the use of especial antennas and receivers can minimize multipath, it cannot always be eliminated and frequently the residual multipath disturbance remains as the major error in GPS results. The high-frequency multipath from large delays can be attenuated by double difference (DD) denoising methods. But the low-frequency multipath from short delays is very difficult to be reduced or modeled. In this paper, it is proposed a method based on wavelet regression (WR), which can effectively detect and reduce the low-frequency multipath. The wavelet technique is firstly applied to decompose the DD residuals into the low-frequency bias and high-frequency noise components. The extracted bias components by WR are then directly applied to the DD observations to correct them from the trend. The remaining terms, largely characterized by the high-frequency measurement noise, are expected to give the best linear unbiased solutions from a least-squares (LS) adjustment. An experiment was carried out using objects placed close to the receiver antenna to cause, mainly, low-frequency multipath. The data were collected for two days to verify the multipath repeatability. The ground truth coordinates were computed with data collected in the absence of the reflector objects. The coordinates and ambiguity solution were compared with and without the multipath mitigation using WR. After mitigating the multipath, ambiguity resolution became more reliable and the coordinates were more accurate.
Resumo:
GPS active networks are more and more used in geodetic surveying and scientific experiments, as water vapor monitoring in the atmosphere and lithosphere plate movement. Among the methods of GPS positioning, Precise Point Positioning (PPP) has provided very good results. A characteristic of PPP is related to the modeling and / or estimation of the errors involved in this method. The accuracy obtained for the coordinates can reach few millimeters. Seasonal effects can affect such accuracy if they are not consistent treated during the data processing. Coordinates time series analyses have been realized using Fourier or Harmonics spectral analyses, wavelets, least squares estimation among others. An approach is presented in this paper aiming to investigate the seasonal effects included in the stations coordinates time series. Experiments were carried out using data from stations Manaus (NAUS) and Fortaleza (BRFT) which belong to the Brazilian Continuous GPS Network (RBMC). The coordinates of these stations were estimated daily using PPP and were analyzed through wavelets for identification of the periods of the seasonal effects (annual and semi-annual) in each time series. These effects were removed by means of a filtering process applied in the series via the least squares adjustment (LSQ) of a periodic function. The results showed that the combination of these two mathematical tools, wavelets and LSQ, is an interesting and efficient technique for removal of seasonal effects in time series.
Resumo:
The Brazilian Network for Continuous Monitoring of GPS - RBMC, since its foundation in December of 1996, has been playing an essential role for the maintenance and user access of the fundamental geodetic frame in the country. It provides to users a direct link to the Brazilian Geodetic System. Its role has become more relevant with the increasing use of space navigation technology in the country. Recently, Brazil adopted a new geodetic frame, SIRGAS2000, in February 2005, fully compatible with GNSS technology. The paper provides an overview of the recent modernization phases the RBMC network has undergone highlighting its future steps. From its current post-mission mode, the RBMC will evolve into a real-time network, providing real-time data and real-time correction to users. The network enhanced with modern GPS receivers and the addition of atomic clocks will be used to compute WADGPS-type corrections to be transmitted, in real time, to users in Brazil and surrounding areas. It is estimated that users will be able to achieve a horizontal accuracy around 0.5 m (1 σ) in static and kinematic positioning and better for dual frequency users. The availability of the WADGPS service will allow users to tie to the new SIRGAS2000 frame in a more rapid and transparent way for positioning and navigation applications. It should be emphasized that support to post-mission static positioning, will continue to be provided to users interested in higher accuracy levels. In addition to this, a post-mission Precise Point Positioning (PPP) service will be provided based on the one currently provided by the Geodetic Survey Division of NRCan (CSRS-PPP). The modernization of the RBMC is under development based on a cooperation signed at the end of 2004 with the University of New Brunswick, supported by the Canadian International Development Agency and the Brazilian Cooperation Agency. The Geodetic Survey Division of NRCan is also participating in this modernization effort under the same project. © Springer-Verlag Berlin Heidelberg 2009.
Resumo:
Brazil adopted SIRGAS2000 in 2005. This adoption called for the provision of the relationships between SIRGAS2000 and the previous reference frames used for positioning, mapping and GIS, namely, the Córrego Alegre (CA) and the South American Datum of 1969 (SAD 69). Two programs were designed for this purpose. The first one, TCGeo, provided the relationships based on three-translation Similarity Transformation parameters. TCGeo was replaced in December 2008, by ProGriD. ProGriD offers, besides the same similarity transformation as TCGeo, a set of transformations based on modelling the distortions of the networks used in the various realizations of CA and SAD 69. The distortion models are represented by a grid in which each node contains a transformation value in terms of difference in latitude and in longitude. The grid follows the same specifications of the NTv2 grid, which has been used in other countries, such as Canada, USA and Australia. This paper presents ProGriD and its main functionalities and capabilities. ©Springer-Verlag Berlin Heidelberg 2012.
Resumo:
The Brazilian Network for Continuous Monitoring of GNSS - RBMC is a national network of continuously operating reference GNSS stations. Since its establishment in December of 1996, it has been playing an essential role for the maintenance and user access of the fundamental geodetic frame in the country. In order to provide better services for RBMC, the Brazilian Institute of Geography and Statistics - IBGE and the National Institute of Colonization and Land Reform - INCRA are both partners involved in the National Geospatial Framework Project - PIGN. This paper provides an overview of the recent modernization phases the RBMC network has undergone highlighting its future steps. These steps involve the installation of new equipment, provide real time data from a group of core stations and compute real-time DGPS corrections, based on CDGPS (The real-time Canada-Wide DGPS Service) (The Real-Time Canada-Wide DGPS Service. http://www.cdgps.com/ 2009a). In addition to this, a post-mission Precise Point Positioning (PPP) service has been established based on the current Geodetic Survey Division of NRCan (CSRS-PPP) service. This service is operational since April 2009 and is in large use in the country. All activities mentioned before are based on a cooperation signed at the end of 2004 with the University of New Brunswick, supported by the Canadian International Development Agency and the Brazilian Cooperation Agency. The Geodetic Survey Division of NRCan is also participating in this modernization effort under the same project. This infrastructure of 66 GNSS stations, the real time, post processing services and the potentiality of providing Wide Area DGPS corrections in the future show that the RBMC system is comparable to those available in USA and Europe. © Springer-Verlag Berlin Heidelberg 2012.
Resumo:
Nowadays, L1 SBAS signals can be used in a combined GPS+SBAS data processing. However, such situation restricts the studies over short baselines. Besides of increasing the satellite availability, SBAS satellites orbit configuration is different from that of GPS. In order to analyze how these characteristics can impact GPS positioning in the southeast area of Brazil, experiments involving GPS-only and combined GPS+SBAS data were performed. Solutions using single point and relative positioning were computed to show the impact over satellite geometry, positioning accuracy and short baseline ambiguity resolution. Results showed that the inclusion of SBAS satellites can improve the accuracy of positioning. Nevertheless, the bad quality of the data broadcasted by these satellites limits their usage. © Springer-Verlag Berlin Heidelberg 2012.
Resumo:
A multiyear solution of the SIRGAS-CON network was used to estimate the strain rates of the earth surface from the changing directions of the velocity vectors of 140 geodetic points located in the South American plate. The strain rate was determined by the finite element method using Delaunay triangulation points that formed sub-networks; each sub-network was considered a solid and homogeneous body. The results showed that strain rates vary along the South American plate and are more significant on the western portion of the plate, as expected, since this region is close to the subduction zone of the Nazca plate beneath the South American plate. After using Euler vectors to infer Nazca plate movement and to orient the velocity vectors of the South American plate, it was possible to estimate the convergence and accommodation rates of the Nazca and South American plates, respectively. Strain rate estimates permitted determination of predominant contraction and/or extension regions and to establish that contraction regions coincide with locations with most of the high magnitude seismic events. Some areas with extension and contraction strains were found to the east within the stable South American plate, which may result from different stresses associated with different geological characteristics. These results suggest that major movements detected on the surface near the Nazca plate occur in regions with more heterogeneous geological structures and multiple rupture events. Most seismic events in the South American plate are concentrated in areas with predominant contraction strain rates oriented northeast-southwest; significant amounts of elastic strain can be accumulated on geological structures away from the plate boundary faults; and, behavior of contractions and extensions is similar to what has been found in seismological studies. © 2013 Elsevier Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Since 2000 the use of the GPS navigation increases considerably. The reason for that was the deactivation of the selective availability in May 2000. However, these receivers do not register the observables, they just estimate and store them and that prevents the post-processing data. Based in this aspect some softwares were developed and are available for free. They allow recording the GPS observables, pseudorange and carrier phase. These programs are able to read in binary files and record information concerning the GPS observables and to convert binary format to a RINEX format. This study presents the GPS Garmin 12 XL evaluation using free programs. Two experiments were carried out in Presidente Prudente-SP region using the relative static survey. The processing was carried out with intervals of 30, 15, 10 and 5 minutes. The results were compared with the coordinates from a geodetic receiver and show that 98.9 % of the points, the values in relation to the planimetric accuracy were better than 0.50 m. The only baseline which the value was larger or equal to 0.50 m is the point M0001 (baseline lesser than 2 km) referred to the first experiment. In terms of precision the values did not exceeded 0.30 m.