91 resultados para Gène ribosomal
Resumo:
The frequency of adenine mononucleotides (A), dinucleotides (AA) and clusters, and the positions of clusters, were studied in 502 molecules of the 5S rRNA.All frequencies were reduced in the evolutive lines of vertebrates, plants and fungi, in parallel with increasing organismic complexity. No change was observed in invertebrates. All frequencies were increased in mitochondria, plastids and mycoplasmas. The presumed relatives to the ancestors of the organelles, Rhodobacteria alfa and Cyanobacteria, showed intermediate values, relative to the eubacterial averages. Firmibacterid showed very high number of cluster sites.Clusters were more frequent in single-stranded regions in all organisms. The routes of organelles and mycoplasmas accummulated clusters at faster rates in double-stranded regions. Rates of change were higher for AA and clusters than for A in plants, vertebrates and organeltes, higher for cluster sites and A in mycoplasmas, and higher for AA and A in fungi. These data indicated that selection pressures acted more strongly on adenine clustering than on adenine frequency.It is proposed that AA and clusters, as sites of lower informational content. have the property of tolerating positional variation in the sites of other molecules (or other regions of the same molecule) that interact with the adenines. This reasoning was consistent with the degrees of genic polymorphism. low in plants and vertebrates and high in invertebrates. In the eubacteria endosymbiontic or parasitic to eukaryotes, the more tolerant RNA would be better adapted to interactions with the homologous nucleus-derived ribosomal proteins: the intermediate values observed in their precursors were interpreted as preadaptive.Among other groups, only the Deinococcus-Thermus eubacteria showed excessive AA and cluster contents, possibly related to their peculiar tolerance to mutagens, and the Ciliates showed excessive AA contents, indicative of retention of primitive characters.
Resumo:
The length polymorphism of ribosomal DNA ITS-1 intergenic spacer was analyzed in eight species of triatomines belonging to Triatoma, Rhodnius, and Panstrongylus genera. The analyzed species were Rhodnius domesticus, R. neivai, R. robustus, Triatoma brasiliensis, T. infestans, T. vitticeps, Panstrongylus megistus, and P. herreri. These insects are vectors of Chagas' disease, one of the most prominent public health problems among South American countries. This work allowed the differentiation between species of the Triatomini and Rhodniini tribes through the analysis of ITS-1 length polymorphism by PCR and RFLP techniques. The species of the Triatoma and Panstrongylus genera presented an amplified ITS-1 fragment between 600 and 1000 bp, whereas Rhodnius presented a less variable ITS-1 length fragment, around 300 bp, which could reflect the monophyletic origin of the Rhodniini tribe. Species belonging to this genus were further differentiated by RFLP with HaeIII and AluI endonucleases. Our results corroborate the hypothesis of polyphyletic origin in this group of insects and contribute to knowledge about evolutionary relationships in triatomines.
Resumo:
Small nuclear ribonucleoproteins (snRNPs)are involved in trans-splicing processing of pre-mRNA in Trypanosoma cruzi. To clone T. cruzi snRNPs we screened an epimastigote cDNA library with a purified antibody raised against the Sm-binding site of a yeast sequence. A clone was obtained containing a 507 bp-insert with an ORF of 399 bp and coding for a protein of 133 amino acids. Sequence analysis revealed high identity with the L27 ribosomal proteins from different species including: Canis familiaris, Homo sapiens, Schizosaccharomyces pombe and Saccharomyces cerevisiae. This protein has not been previously described in the literature and seems to be a new ribosomal protein in T. cruzi and was given the code TcrL27. To express this recombinant T. cruzi L27 ribosomal protein in E. coli, the insert was subcloned into the pET32a vector and a 26 kDa recombinant protein was purified. Immunoblotting studies demonstrated that this purified recombinant protein was recognized by the same anti-Sm serum used in the library screening as well as by chagasic and systemic lupus erythemathosus (SLE) sera. Our results suggest that the T. cruzi L27 ribosomal protein may be involved in autoimmunity of Chagas disease.
Resumo:
The phylogenetic interrelationships of members of the Clostridium botulinum complex of species was investigated by direct sequencing of their 16S rRNA genes. Comparative analysis of the 16S rRNA sequences demonstrated the presence of four phylogenetically distinct lineages corresponding to: i) proteolytic C. botulinum types Al B, and F, and C. sporogenes, ii) saccharolytic types B, E and F, iii) types C and D and C. novyi type A, and iv) type G and C. subterminale. The phylogenetic groupings obtained from the 16S rRNA were in complete agreement with the four divisions recognised within the 'species complex' on the basis of phenotypic criteria.
Resumo:
The polymerase chain reaction-restriction fragment length polymorphism technique (PCR-RFLP) was used to compare Rhodnius domesticus (Neiva & Pinto), R. pictipes (Stal), R. prolixus (Stal) and R. stali (Lent; Jurberg & Galvao) (Hemiptera: Reduviidae). The enzyme BstUI differentiated R. donzesticus, R. pictipes and R. prolixus, and HhaI differentiated R. domesticus, R. pictipes and R. stali. With the fingerprinting analysis generated by these two enzymes, it was possible to clearly identify all four species in the study.
Resumo:
We present data supporting cytogenetic observations on nucleolar dominance in hybrids between Drosophila arizonae and D. mulleri. Our approach was to compare the rDNA restriction patterns between the parental species and their hybrids. Results demonstrated that the minichromosome attached to the nucleolus in hybrid males is derived from D. arizonae.
Resumo:
In this study, we report the cloning and nucleotide sequence of PCR-generated 5S rDNA from the Tilapiine cichlid fish, Oreochromis niloticus. Two types of 5S rDNA were detected that differed by insertions and/or deletions and base substitutions within the non-transcribed spacer (NTS). Two 5S rDNA loci were observed by fluorescent in situ hybridization (FISH) in metaphase spreads of tilapia chromosomes. FISH using an 18S rDNA probe and silver nitrate sequential staining of 5S-FISH slides showed three 18S rDNA loci that are not syntenic to the 5S rDNA loci.
Resumo:
In the present study, fluorescence in situ hybridization (FISH) was employed to determine the chromosomal location of genes 18S rDNA and 5S rDNA in four rainbow trout stocks. In specimens from the stocks of Núcleo Experimental de Salmonicultura de Campos do Jordão and Gavião river, 18S genes were located at a subterminal position in the long arms of two submetacentric chromosomes, whereas in specimens from stocks of Mount Shasta and Teresópolis they were found in the short arms. In all analyzed stocks, 5S genes were located in two chromosome pairs. In a subtelocentric pair, 5S genes were present in the short arms and, in the other submetacentric pair, 5S genes were at an interstitial position. In the latter, 18S and 5S genes were contiguous. Taking into account that both 18S and 5S rDNA genes have been localized in the short arm of a submetacentric chromosome in almost all rainbow trout samples so far studied, the presence of such genes in the long arm, as seen in the samples from Núcleo Experimental de Salmonicultura de Campos do Jordão and Gavião river, supports the hypothesis of a pericentric inversion involving this chromosome segment in the ancestor line of these stocks. The observed polymorphism allowed the identification of a very useful genomic marker, and may therefore constitute an important tool in the genetic management of rainbow trout stocks.
Resumo:
A physical chromosome mapping of the H1 histone and 5S and 18S ribosomal RNA (rRNA) genes was performed in interspecific hybrids of Pseudoplatystoma corruscans and P. reticulatum. The results showed that 5S rRNA clusters were located in the terminal region of 2 chromosomes. H1 histone and 18S ribosomal genes were co-localized in the terminal portion of 2 chromosomes (distinct from the chromosomes bearing 5S clusters). These results represent the first report of association between H1 histone and 18S genes in fish genomes. The chromosome clustering of ribosomal and histone genes was already reported for different organisms and suggests a possible selective pressure for the maintenance of this association. © 2012 S. Karger AG, Basel.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)