177 resultados para Fruit flies
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Pós-graduação em Química - IQ
Resumo:
This study presents new reports on frugivorous flies and their parasitoids associated with the fruits of Pouteria caimito Radlk. (Sapotaceae), a plant native to the Amazon region. In addition to the new reports, this study also presents the infestation and parasitism rates, for dipterous and hymenopteran parasitoids, respectively.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Postbloom fruit drop (PFD), caused by Colletotrichum acutatum, produces blossom blight, fruit abscission and persistent calyces. in groves of Pera-Rio and Natal sweet orange located in Santa Cruz do Rio Pardo and Rincao, São Paulo, Brazil, four experiments were carried out to evaluate the effectiveness of fungicides sprayed alone or as mixtures, at different flowering stages for the control of PFD of citrus. The number of symptomatic flowers, the percentage of fruit set (FS), and the relationship between persistent calyces and total fruit weight per plant were evaluated. The fungicides carbendazim and folpet were sprayed at 0.50 ml and 1.25 ga.i. l(-1) of water, respectively, were superior by all the criteria to the other treatments. Carbendazim and folpet fungicides performed best when they were applied at the green bud through hollow ball stages. Difenoconazole, independent of application timing, was less effective by all criteria used. Application of mancozeb at 1.60 ga.i. l(-1) at the green bud stage followed by application of mancozeb in a tank mix with carbendazim or folpet at 1.0 ml and 1.25 g a.i. l(-1), respectively, during green bud bloom and hollow ball stages were effective for disease control. Carbendazim combined with 0.25% KNO3, reduced the number of persistent calyces and increased fruit production significantly. Applications must be made between green bud and hollow ball stages for best control. Applications only at hollow ball or open flower stages did not provide effective disease control. (C)2007 Elsevier Ltd. All rights reserved.
Resumo:
Citrus black spot (CBS) is a fungal disease, caused by Guignardia citricarpa, that has a high economic impact on citrus. Although G. citricarpa has been associated with black spot of citrus, an adequate pathogenicity test is still not available. Thus, our objective was to develop and evaluate a simple, safe, and practical pathogenicity test. We used fruits from Pera-Rio and Valencia sweet orange trees from two different orchards, located in the State of São Paulo, Brazil. Inoculation was performed by placing six disks colonized by G. citricarpa, onto the peel of healthy fruits, previously bagged. In the Pera-Rio sweet orange grove, initial symptoms of the false melanose type resulting from the inoculations were observed 55 days after inoculation (dai). In the Valencia grove, initial symptoms also of the false melanose type resulting from the inoculations occurred 73 dai. A total of 92.8% and 86.6% of the Pera Rio and Valencia fruits inoculated, respectively, showed symptoms of CBS. Citrus black spot symptoms were not observed in any of the control fruits.