198 resultados para Friction layer
Resumo:
Polymer light-emitting devices (PLEDs) have been produced with Langmuir-Blodgett (LB) films from poly(2-methoxy-5-hexyloxy)-p-phenylenevinylene (OC1OC6-PPV) as the emissive layer and an ionomer of a copolymer of styrene and methylmethacrylate (PS/PMMA) as an electron-injection layer. The main features of such devices are the low operating voltages, obtainable firstly due to the good quality of the ultrathin LB films that allows PLEDs to be produced reproducibly and secondly due to the improved electrical and luminance properties brought by the electron-injection layer. Also demonstrated is the superior performance of an all-LB device compared to another one produced with cast films of the same materials. Published by Elsevier B.V.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
An increase of the reports involving mimetic systems has been observed. Briefly, these systems use biological phospholipids to exploit specific interactions between membrane-models and drugs. Here, the Layer-by-Layer (LbL) and Langmuir techniques were used to investigate the interaction between cardiolipin (CLP-negative phospholipid) and a cationic-like drug methylene blue (MB). Supported by a cationic polyelectrolyte (PAH), LbL films containing PAH/(CLP + MB) and PAH/(CLP + MB + AgNP) were grown up to 14 bilayers. The optical microscopy analysis revealed a decrease of the CLP vesicle sizes in the presence of MB as a possible consequence of the MB action onto the mechanical properties of the CLP membrane. From FTIR spectra, changes mainly related to peak position and band intensity and shape were observed in the spectra from PAH/CLP when in the presence of MB. The latter supports that the interactions between the phosphate and amine charged groups from CLP and PAH, respectively, established during the LbL film fabrication, besides the CLP hydrocarbon environment, are influenced by the presence of MB. Using the micro-Raman technique, a chemical mapping was build based on MB spectrum by resonance Raman scattering (RRS) and surface-enhanced resonance Raman scattering (SERRS). The later phenomenon was activated by Ag nanoparticles (AgNPs) trapped within the LbL film allowing collecting spectra for a single bilayer of PAH/(CLP + MB + AgNP). A rough estimation showed a SERRS amplification of 10(3) in comparison to RRS spectra. As a complementary approach, Langmuir films of CLP in the presence of co-spread MB were investigated through surface pressure vs mean molecular area (pi-A) isotherms. The results showed that for concentrations of MB below 100 mol%, the drug is expelled to water subphase for high values of surface pressure (condensed phase). For concentration at 100% and higher, the MB keeps bound to CLP floating monolayer. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The discovery of the spatial uniform coexistence of superconductivity and ferromagnetism in ruthenocuprates, RuSr2GdCu2O8 (Ru-1212), has spurred an extraordinary development in the study of the competition between magnetism and superconductivity. However, several points of their preparation process and characterization that determine their superconductive behaviour are still obscure. The improvement of sample preparation conditions involves some thermal treatments in inert atmosphere. Anelastic spectroscopy measurements were made using an inverted torsion pendulum, operating with an oscillation frequency of 38 Hz, temperature in the 90 and 310 K range, heating rate of 1 K/min, and vacuum better than 10(-3) Pa. The results show anelastic relaxation peaks at 210 K related to the presence of interstitial oxygen atoms. The peaks decrease significantly with the oxygen loss caused by the heat treatments in vacuum, appearing again after the annealing of the sample in an oxygen atmosphere. These observed peaks are clearly related to the additional oxygen atoms, with activation energy 0.13 and 0.36 eV, and can be explained in terms by diffusional jumps of interstitial oxygen in the RuO2 planes. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Over the years, grinding has been considered one of the most important manufacturing processes. Grinding is a high precision process, and the loss of a single workpiece in this stage of the production is unacceptable, fir the value added to the material is very high due to many processes it has already undergone prior to grinding. This study aims to contribute toward the development of an experimental methodology whereby the pressure and speed of the air layer produced by the high rotation of the grinding wheel is evaluated with and without baffles, i.e., in an optimized grinding operation and in a traditional one. Tests were also carried out with steel samples to check the difference in grinding wheel wear with and without the use of baffles.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The concrete offshore platforms, which are subjected a several loading combinations and, thus, requires an analysis more generic possible, can be designed using the concepts adopted to shell elements, but the resistance must be verify in particular cross-sections to shear forces. This work about design of shell elements will be make using the three-layer shell theory. The elements are subject to combined loading of membrane and plate, totalizing eight components of internal forces, which are three membrane forces, three moments (two out-of-plane bending moments and one in-plane, or torsion, moment) and two shear forces. The design method adopted, utilizing the iterative process proposed by Lourenco & Figueiras (1993) obtained from equations of equilibrium developed by Gupta (1896) , will be compared to results of experimentally tested shell elements found in the literature using the program DIANA.
Resumo:
Objective: To investigate the degree of debris, roughness, and friction of stainless steel orthodontic archwires before and after clinical use.Materials and Methods: For eight individuals, two sets of three brackets (n = 16) each were bonded from the first molar to the first premolar. A passive segment of 0.019- x 0.025-inch stainless steel archwire was inserted into the brackets and tied by elastomeric ligature. Debris level (via scanning electron microscopy), roughness, and frictional force were evaluated as-received and after 8 weeks of intraoral exposure. Mann-Whitney, Wilcoxon signed-rank, and Spearman correlation tests were used for statistical analysis at the .05 level of significance.Results: There were significant increases in the level of debris (P = .0004), roughness of orthodontic wires (P = .002), and friction (P = .0001) after intraoral exposure. Significant positive correlations (P < .05) were observed between these three variables.Conclusion: Stainless steel rectangular wires, when exposed to the intraoral environment for 8 weeks, showed a significant increase in the degree of debris and surface roughness, causing an increase in friction between the wire and bracket during the mechanics of sliding. (Angle Orthod. 2010;80:521-527.)