19 resultados para Forest products.
Resumo:
The study of physical and mechanical properties of wood is essential for its structural use and it is of great importance to the construction industry. Thus, this study aimed to determine the physical and mechanical properties of the wood Amaru - a hybrid of Eucalyptus, developed by Plantar Projects and Forest Products Ltda. In order to determine the properties of Amaru, round samples were used, which were provided to the Laboratory of Wood and Wooden Structures of the School of Engineering of São Carlos, University of São Paulo - LaMEM / EESC / USP. For the characterization of the physical properties, the apparent specific gravity and moisture content of the samples were determined. To the mechanical characterization, the following properties were evaluated: strength and stiffness in compression, strength and stiffness in bending, shear and tension. The procedures of the tests performed in this study were done according to the recommendations of the Brazilian Wood Standard ABNT NBR 7190:1997. The specimen used were confectioned in actual dimensions, according to as those used in the construction system proposed by Plantar. The results obtained from the tests performed showed that the mechanical properties approached the values proposed by the Wood Standard NBR 7190. The visual grading was important to provide a primary idea about the failure modes to be obtained from the tests performed. The bending test showed the modulus of elasticity (MOE) and Modulus of Rupture (MOR), which resulted in 15822 MPa and 101,7 MPa, respectively. The compression test resulted in values Ec0,m and fc0, 15698 MPa and 50,7 MPa. The tensile strength (ft0) of this hybrid was calculated and its value obtained was 60,8 MPa. The shear strength (fv0) was 8,2 MPa. The results obtained from the tests are the basis for engineers and architects to design structures using wood species Amaru
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Dilute acid hydrolysis studies were performed on forest residues of Eucalyptus grandis, in a cylindrical reactor of stainless steel. The kinetics of this hydrolysis reaction was investigated employing 0.65% sulfuric acid, a residue/acid solution ratio of 1/9 (w/w), temperatures of 130, 140, 150, and 160 degrees C, and reaction times in the range 20-100 min. The results showed that, under the optimized conditions of acid hydrolysis employed in this study, the variables temperature and reaction time had a strong influence on hemicellulose removal and a small influence on the degree of lignin and cellulose removal. The highest xylose extraction yield was 87.6% attained at 160 degrees C, after 70 min reaction time, simultaneously with the formation of decomposition products, namely 2.8% acetic acid, 0.6% furfural, and 0.06% 5-hydroxymethylfurfural. A similar xylose extraction yield (82.8%) was observed at 150 degrees C after 100 min, with the formation of 3.2% acetic acid, 1.0% furfural, and 0.07% 5-hydroxymethylfurfural. The kinetic parameters determined at 130, 140, 150, and 160 degrees C for degradation of xylan present in the hemicellulose of the eucalyptus forest residue during the formation of xylose were the first-order reaction rate constants (k) for each temperature, 1.22 x 10(-4), 2.12 x 10(-4), 5.43 x 10(-4), and 9.05 x 10(-4) s(-1), respectively, and an activation energy (E-a) of 101.3 kJ mol(-1).
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)