334 resultados para Foliar nutrition
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A carência de informações na literatura sobre a amostragem de folhas da gravioleira, particularmente, a definição da posição da folha na copa das árvores e das folhas nos ramos ainda é um fator limitante para a diagnose foliar dessa cultura. Objetivando determinar a parte da planta indicada para a amostragem de folhas e a avaliação do estado nutricional da gravioleira conduziu-se um experimento no Campo Experimental da Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA) Agroindústria Tropical, em Pacajus (CE), no período de março a abril de 2003. Colheram-se folhas de três posições da copa (terço superior, terço médio e terço inferior) e três posições no ramo (folhas da parte apical, mediana e basal) e determinaram-se os teores de P, K, Ca, Mg, S, Fe, Cu, Zn e Mn. Os resultados permitem sugerir que os teores de minerais das folhas da parte mediana da copa das árvores e na posição mediana do ramo refletem melhor o estado nutricional da frutífera.
Resumo:
Lady palm, [Rhapis excelsa (Thunberg) Henry ex. Rehder] is one of the most cultivated ornamental palms in the world, for use as a vase plant or in shaded landscapes. Because limited information exists on lady palm response to fertilizers, the objective of this study was to evaluate the effect of different types of fertilization and substrates on lady palm seedling growth and development. Three year old lady palms were planted in 8-L pots, filled with a mix of soil, manure, and sand 1:1:1 (v:v:v), placed under a 50% shade, and irrigated with microspray. Treatments were substrate fertilization with 500 g P(2)O(5) and 100 g K(2)O per m(3); fertilization with 1.8 kg of P(2)O(5) (simple superphosphate) per m3; 50 g of nitrogen (N), P(2)O(5), and K(2)O of a granulated fertilizer (10:10:10) per m(3), control (without fertilization), and a foliar fertilization in addition to these treatments using the commercial product Biofert (8:9:9). Treatments were replicated four times in a randomized block design. Each treatment plot consisted of four plants. Data were collected at 140, 170, 200, 230, 260, and 290 days after transplanting (DAT) for plant heights, stem diameter at substrate level, number of leaves, shoots, and canopy, roots fresh and dry matter samples were harvest at 290 days. Foliar fertilization resulted in significantly greater plant height in a 140, 120, 200, and 230 DAT and plant diameter on the 140, 260, and 290 DAT. There was interaction among factors for number of leaves with fertilization based on P(2)O(5) and K(2)O when leaf fertilizer was added that resulted in a greater number of leaves.
Resumo:
Currently there is very little information on the response of fruiting perennial plants to applied P. This is especially true for tropical production areas where soils have a high capacity of P fixation, and are poor in native phosphorus. An alternative to soil P fertilization, which is inefficient in fixing soils, is to apply phosphorus as a foliar spray. P is quickly absorbed by leaves, and is redistributed quite well through the plants because its phloem mobility, and foliar application may be a viable practice. The purpose of this present work, is to determine the effectiveness of foliar P application on the nutritional status and yield of guava. The experiment was done in a Typic Hapludox, for three consecutive agricultural years, in an adult orchard of 'Paluma' guava. Five treatments were tested: four rates leaf applications of P (0-0.5-1.0 and 2.0% of P2O5) and a control where P was applied to soil (200 g of P2O5/plant). Through the results it was verified that the foliar application of P altered the concentration of the nutrient in the soil (13 to 48 mg dm-3 P-resin), and in the guava leaves (1.2 to 1.8 g of P kg-1), but did not affect the production of fruits. In conclusion, in field conditions, it is viable to combine the phosphorus foliar fertilization with disease control, without increasing the operations and, consequently, the production cost.
Resumo:
The ideal size precision of the foliar sample determines manual work optimization, and also diminishes inherent errors in diagnosis reports of nutritional state. This work aimed to determine the size of the foliar samples and the sample error variation in guava plantations submitted to two hydric cultivations for the nutritional state diagnosis of this fruit. The work included two studies, both under an entirely randomized experimental design. Study 1 was carried out in an orchard under unirrigated cultivation with four treatments and six repetitions that consisted of leaf collection in 5, 10, 20 and 40 plants. Study 2 was carried out in an orchard under irrigated cultivation with five treatments and 10 repetitions that consisted of leaf collection in 10, 20, 30, 40 and 50 guava plants. It was concluded that in unirrigated orchards it is necessary to sample leaves in 40 plants in order to keep the macronutrients sample error between 5 to 10%. For the micronutrients, on the other hand, at least 40 plants were necessary and, if Fe and Zn were considered, the sample must be even larger. In irrigated orchards, leaves deriving from 10 plants were enough to keep the sample error between 5 to 10%. However, considering the micronutrients, it was necessary to sample 20 guava plants.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The present study aimed to determine which leave will be displayed and the time of collection of this leave. The treatments consisted on five doses of nitrogen, four times for collection sampling and three types of leaves, arranged in a randomized block design with three repetitions, totalizing one hundred and forty-four experimental units. The leaves collections took place every fifteen days at thirty, forty-five, sixty and seventy five days after budbreak (DAB), collecting the laminated / compound young leaf (first leave), newly mature (second leave) and the mature leave (third leave) from the set of terminal leaflets. For this was installed an experiment with the culture of potato (cv. Atlantic), in Barretos/SP, the period of march the june of 2010. According to this data collected in this study, the best time for collecting the leaves is at 30 days after the budbreak of the potato cultivation containing nitrogen concentrations in the leaves minus heterogeneous of plants from a fraction to another and with values R2 = 0.98 being higher to the all times of harvests. To the diagnostic leaf, the highest determination coefficient was observed in the newly mature (second leaf) with R2 = 0.98. It can be observed that the highest levels of nitrogen were found on the first leaf (39.01 kg-1). Nevertheless, the values were very heterogeneous and did not fit the curve being the second leave (newly mature) the one that best represents the nutritional status of the plant. Therefore the recommendation for nutritional diagnosis will collect the recently matured leaves (2nd leaf) 30 days after budbreak.
Resumo:
Influence of different foliar fertilizers (phosphite, micronutrients, biostimulant, phosphite + micronutrients, phosphite + biostimulant, micronutrients + biostimulant and phosphite + micronutrients + biostimulant) on yield of sugarcane was evaluated after fertilization at 30, 90 and 150 days after harvesting two-year-old sugarcane. The experiment was carried out in a commercial crop employing a randomized block design in four replicates. Higher stalk masses were observed for fertilization at 30 days after harvest, and the higher content of sucrose, total recoverable sugar and Brix degrees were observed for sugarcane fertilized after 150 days. Statistical analysis (Duncan's test) revealed no significant variation (P & 0.05) in Brix degree, sucrose content and total recoverable sugar. For total recoverable sugar x stalk weight (the main payment type for sugarcane producers), the following sequence (time treatment, fertilizer composition) 30-days, micronutrient + biostimulant; 150-days, biostimulant; and 90-days, biostimulant increased 11%, 17%, and 21% the yield of sugarcane. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
The isotopic technique was employed to study boron (B) mobility in tomato and beetroot plants under protected cultivation conditions. An experiment was conducted in which both species grew in 10-dm3 vases filled with coconut fiber, under hydroponic conditions. The plants were subjected to four different treatments: (1) no B in the substratum and no foliar fertilization; (2) no B in the substratum, with foliar 10B fertilization; (3) B in the substratum, with foliar 10B fertilization; and (4) 10B in the substratum and no foliar fertilization. The biological growth variables and total B and 10B contents in the plant parts grown after the application of the nutrient were evaluated. For increasing B content in young tissues, the foliar application of this element was not as efficient as application via root system, indicating low mobility of B in the tissues of both beetroot and tomato plants. © 2013 Copyright Taylor & Francis Group, LLC.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA
Resumo:
Pós-graduação em Química - IQ