44 resultados para Fog
Resumo:
As revealed by the NADH-diaphorase and myosine ATPase, the M. extensor carpi radialis longus of the rat possesses at least 3 main kinds of fibres, with different distribution on the superficial and deep portions of the muscle. The superficial portion revealed that 67.68 % are FG (fast-twitch-glycolytic) fibres, 14.72 % are FOG (fast-twitch-oxidative) fibres and 17.60 % are SO (slow-twitch-glycolytic) fibres. Already the deep portion revealed that 71.29 % are SO (slow-twitch-glycolytic) fibres, 17.46 % are FOG (fast-twitch-oxidative-glycolytic) fibres and 11.25 % are FG (fast-twitch-glycolytic) fibres. The miosine ATPase reaction was used to demonstrate contracting characteristics. These findings suggest that the movements of fast contraction of the M. extensor carpi radialis longus are predominant.
Resumo:
Fiber types distribution in the diagastric muscle of tufted capuchin monkey was studied by means of NADH-TR, myosin-ATPase, after alkaline and acid preincubations and SDH histochemical reactions. Three different types of fibers were found presenting an equal distribution. The percentage and types of fibers were as follow: 18.2 % SO (Slow Oxydative), 38.4 % FOG (Fast Oxydative Glycolytic) and 43.4 % FG (Fast Glycolytic). FG fibers revealed the largest area. The relatively high concentration of fast twitch (81.2 %) seems to indicate this muscle is involved with the acceleration and fast speed of jaw movements. Aerobic metabolism represented by SO + FOG fibers (56.6 %) suggests that this muscle possesses an additional role than that related to the lowering of the jaw.
Resumo:
Despite the fact that chromium electrodeposition results in protection against wear and corrosion, combined with chemical resistance and good lubricity, the reduction in fatigue strength of base metal and environmental requirements causes one to search for possible alternatives. To improve the fatigue and corrosion resistance of AISI 4340 steel, an experimental study has been made for an intermediate electroless nickel layer deposited on base metal. The objective of this study was to analyze the effect of nickel underplate on the fatigue and corrosion strength of hard-chromium-plated AISI 4340 steel. Deposition of the conventional wear-resistant hard chromium plating leads to a decrease in mechanical properties of the base metal, especially the fatigue strength. Rotating bending fatigue tests results indicate better performance for conventional hard chromium plating. Good corrosion resistance in salt fog exposure was obtained for the accelerated hard chromium plating. Experimental data showed higher fatigue and corrosion resistance for samples prepared with accelerated hard chromium plate over electroless nickel plate, when compared with samples without electroless nickel underplate.
Resumo:
The extensor digitorum longus (EDL) and soleus (SOL) muscle fibres from albino rats submitted to experimental chronic alcoholism were evaluated in accordance with their metabolic and morphometric profiles. Twenty-seven male animals aged 4 months and weighing approximately 400 g were used. The animals were divided into three groups: control, isocaloric and alcoholic and sacrifices were carried out after 5, 10 and 15 months. The muscles were dissected, removed, cross-sectioned in a cryostat and submitted to the NADH (nicotinamide adenine dinucleotide) reaction. The SO (slow-twitch-oxidative), FG (fast-twitch-glycolytic) and FOG (fast-twitch-oxidative-glycolytic) muscle fibre types exhibited a polygonal, triangular or rounded shape and did not present noteworthy modifications in either muscles during the study. The cross-sectional areas of the fibres from the studied muscles did not present significant differences during the observations. Fibre area behaved similarly in the alcoholic animals up to the 10th month, i.e. it was decreased, as also observed in the other groups. At 15 months, however, all fibres were increased, with a predominance of FG fibres in the SOL muscle. Changes in fibre population were observed mainly in the SOL muscle of alcoholic animals: SO fibres were initially increased in number but decreased after the 10th month, and the opposite was observed for the population of FG fibres. FOG fibres increased linearly in number throughout the experiment. The statistical analysis showed nevertheless that the fibre population and cross-sectional area changes were not significant. In the alcoholic animals quantitative variations of muscle fibres were more evident in the SOL muscle, suggesting that the SOL muscle is more sensitive to the toxic action of ethanol. The results concerning the increased fibre diameter in alcoholic animals would be associated with muscle oedema induced directly or indirectly by the ethanol.
Resumo:
The present study was conducted on vocal muscles removed at autopsy Rom adult individuals (10 men and 8 women, aes ranging from 48 to 78 years) with no laryngeal disease. Histologic analysis was performed with hematoxylin and eosin staining, and histochemical analysis was performed by nicotinamide-adenine-dinucleotide tetrazolium reductase, succinate dehydrogenase, and acid and alkaline myofibrillar adenosine triphosphatase reactions. The histochemical reactions showed that the muscle consists of slow-twitch oxidative (SO), fast-twitch glycolytic (FG), and fast-twitch glycolytic oxidative (FOG) fibers distributed in mosaic form. The frequencies of SO, FOG, and FG fibers were 40.50%, 54.75%, and 4.75%, respectively. The higher frequency of SO and FOG oxidative fibers characterizes the muscle as having aerobic metabolism, resistance to fatigue, and fast contraction. The mean minimum diameters were 31.37 mu m for SO fibers and 36.46 mu m for FOG and FG fibers.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The final levels of ethanol (levels of ethanol produced plus that added initially to the media) reached by the thermotolerant yeasts were highest (16.5-20.3%, v/v) at 8% initial ethanol. The thermotolerant yeasts were found to have the following characteristics: constant levels of ethanol formation (10.5-12.3%, v/v), fog additions of external ethanol within the range 2-8% (v/v) of initial ethanol; constant values of product coefficients when initial ethanol was in the range of 2-6%, which increased or decreased, depending on the strain, when initial ethanol exceeded 6%; growth activity was inhibited at different levels of addition of external ethanol when final biomass and specific rate of growth were compared; significant differences among the yeast strains in the amount of external ethanol capable of reducing biomass formation by one half. In addition, the viability of the strains (early stationary phase) varied with the amount of external ethanol, the lowest viabilities occurring at concentrations of initial ethanol ranging from 4 to 7% and the highest in the range of 7 to 8% (v/v). The relative levels of trehalose (with/without 7% ethanol added initially) in the yeast strains (the stationary phase) ranged from 1.03 to 1.75, suggesting that the effect of produced ethanol on trehalose accumulation was stronger than that of external ethanol. The levels of final ethanol shown by the yeast strains were also correlated with the cellular levels of glycerol-3-phosphate dehydrogenase (increase in enzyme levels with decrease in final ethanol) for cells harvested at the stationary phase.
Resumo:
The influence of restricting feed intake of young bulls in feedlots was evaluated in terms of structure of muscular fibers and respective areas, sampled by biopsy on the semitendinoso muscle. Sixty six crossbred Simental-Nelore bulls, 8 months old, averaging 220±34.03 kg were submited for 84 days in phase 1 (growing period), to three treatments: ad libitum (AL), restriction + whole soybean (RWS) and restriction + toasted whole soybean (RTS). The level of restriction of feed intake was 23%. Phase 2 was performed by splitting the animals in each treatment in phase 1 in two groups, feeding one with a diet containing soybeans and the other with poultry litter. The results showed that the animals AL presented more white fibers (FG), compared to the RWS and RST and a larger area of these fibers. A greater frequency of red fibers was observed in treatments RWS and RST. The conclusion was that the restriction of feed intake and consequent compensatory growth contributed for modulation of the muscular fibers increasing the frequency of the fast oxidative glycolitic (FOG) in 10.88% and decreasing of the slow oxidative (SO) and FG in 4.81 and 6.90%, respectively, with possible alteration on meat quality.
Resumo:
Samples of the anterior and posterior regions of the masseter and temporal muscles and of the anterior belly of the digastric muscle of 4 adult male tufted capuchin monkeys (Cebus apella) were removed and stained with HE and submitted to the m-ATPase reaction (with alkaline and acid preincubation) and to the NADH-TR and SDH reactions. The results of the histoenzymologic reactions were similar, except for acid reversal which did not occur in fibers of the fast glycolytic (FG) type in the mandibular locomotor muscles. FG fibers had a larger area and were more frequent in all regions studied. No significant differences in frequency or area of each fiber type were detected, considering the anterior and posterior regions of the masseter and temporal muscles. The frequency of fibers of the fast oxidative glycolytic (FOG) and slow oxidative (SO) types and of FOG area differed significantly between the anterior belly of the digastric muscle and the mandibular locomotor muscle. The predominance of fast twitch (FG and FOG) fibers and the multipenniform and bipenniform internal architecture of the masseter and temporal muscles, respectively, are characteristics that permit the powerful bite typical of tufted capuchin monkeys.
Resumo:
The phylogenetic proximity of primates to humans, along with their behavioral, biochemical, and anatomical similarities, make such animals more interesting experimental models for biomedical researches, as compared to classical laboratory animals. Another aspect that has called the attention of researchers is the differentiated quadrupedalism present in some primates. The tufted capuchin monkey uses the ground and tree branches as its support for locomotion, showing various postures while performing this task. On the basis of this information, we have decided to study the rectus abdominis muscle of the tufted capuchin monkey, with the following goals: the frequency and area of fiber types; its possible compartmentalization; and identify if this muscle is better adapted to phasic or postural activities. To do this, samples were removed from 4 regions of the rectus abdominis muscle of 6 adult male tufted capuchin monkeys, and were submitted to reaction with m-ATPase, (with alkaline and acid pre-incubation), NADH, and H.E.. Results showed: a statistically significant difference (P<0.05) for both frequency and area, between fiber types FG and FOG and FG and SO, but did not show a statistically significant difference between fibers FOG and SO, in all studied regions; similarity in frequency and area of a same fiber type (FG, FOG, and SO) among the studied regions. Based on these data, it was concluded that: the rectus abdominis muscle of the tufted capuchin monkey does not show fiber compartmentalization, since the distribution and size patterns of the different fiber types are similar in the studied regions; there is a predominance of fast twitch fibers (FG + FOG) over slow twitch fibers (SO), for frequency and area, which characterizes the muscle as being more dedicated to phasic than to postural activities. © 2006 Sociedad Chilena de Anatom.
Resumo:
Study of consumption rate and gaseous pollutant emission from engine tests simulating real work conditions, using spark point manually controlled and exhaust gas recirculation (EGR) in diverse proportion levels. The objective of this work is to re-examine the potential of the EGR conception, a well-known method of combustion control, employed together electronic fuel injection and three-way catalytic converter closed-loop control at a spark ignition engine, verifying the performance characteristics and technical availability of this conception to improve pollution control, fuel economy at low torque drive condition and to improve the engine exhaust components useful life. The pollutant emissions and consumption levels under operational conditions simulations were analysed and compared with the expected by concerning theory and real tests performed by EGR equipped engines by factory. Copyright © 2006 Society of Automotive Engineers, Inc.
Resumo:
A morphological and histochemical study of the human vestibular fold was carried out using routine histological techniques. Seven μm-thick histological sections stained with hematoxylin-eosin (HE) and Calleja showed the presence of elastic collagen fibers and seromucous glands in the vestibular fold. Muscle fibers forming the ventricular muscle were also identified. Ultrastructural analyses of the epithelial layer by scanning electron microscopy (SEM) revealed ciliated cells and gland ducts opening on the epithelial surface. Histochemical analyses were performed on ventricular muscles submitted to nicotinamide-adenine-dinucleotide tetrazolium reductase (NADH-TR), succinate dehydrogenase (SDH), and myofibrillar adenosine triphosphatase (mATPase) reactions. Based on these reactions, it was observed that the muscle is formed by three types of muscle fibers: slow-twitch oxidative (SO), fast-twitch oxydative glycolytic (FOG) and fast-twitch glycolytic (FG) fibers distributed in a mosaic pattern. The fiber frequency was 22.7%, 69.9% and 7.4%, respectively. The higher frequency of SO and FOG fibers characterized the muscle as having aerobic metabolism and resistance to fatigue. The ventricular muscle was considered fast. The study of the neuromuscular junctions performed after nonspecific esterase reaction showed that they are of the en-plaque type and have multiple occurrences in the ventricular muscle.
Resumo:
This experiment evaluated the growth of breast and leg muscle fibers of domestic fowl raised in two enclosure sizes (SE: Small Enclosure, 1.125 m2/10 birds; LE: Large Enclosure, 5.25 m2/10 birds). In breast muscles, the number of fibers per area decreased over time and higher values were observed in broilers housed in SE compared to LE. The fiber size increased with age and was greater in LE than SE at 56 days of age, suggesting greater hypertrophic growth of fibers in breast muscle for broilers maintained in LE. In leg muscles, the muscle cross-sectional area was greater for broilers raised in LE than SE at 56 days of age and decreased from 42 to 56 days of age in broilers raised in SE, suggesting leg muscle atrophy in these birds. The Fast Glycolytic (FG), Fast Oxidative-Glycolytic (FOG) and Slow Oxidative (SO) fibers grew until 42 days of age in both enclosure sizes. The area of FOG fibers was greater in broilers raised in LE than those in SE at 28 and 56 days of age; in LE-raised broilers, the SO area was greater at 28, 42 and 56 days of age, suggesting that the muscles of broilers housed in LE are more oxidative. The BW gain was greater for broilers raised in LE than SE, whereas BW, feed intake and feed conversion were not influenced by enclosure size. Thus, the enclosure space affected hypertrophic growth and metabolic characteristics of breast and leg muscle fibers. © Asian Network for Scientific Information, 2012.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)