86 resultados para Finite temperature QCD
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We show how the zero-temperature result for the heat-kernel asymptotic expansion can be generalized to the finite-temperature one. We observe that this general result depends on the interesting ratio square-root tau/beta, where tau is the regularization parameter and beta = 1/T, so that the zero-temperature limit beta --> infinity corresponds to the cutoff limit tau --> 0. As an example, we discuss some aspects of the axial model at finite temperature.
Resumo:
We discuss the problem of the breakdown of conformal and gauge symmetries at finite temperature in curved-spacetime background, when the changes in the background are gradual, in order to have a well-defined quantum field theory at finite temperature. We obtain the expressions for Seeley's coefficients and the heat-kernel expansion in this regime. As applications, we consider the self-interacting lambdaphi4 and chiral Schwinger models in curved backgrounds at finite temperature.
Resumo:
From spinor and scalar (2 + 1)-dimensional QED effective actions at finite temperature and density in a constant magnetic field background, we calculate the corresponding virial coefficients for particles in the lowest Landau level. These coefficients depend on a parameter theta related to the time-component of the gauge field, which plays an essential role for large gauge invariance. The variation of the parameter theta might lead to an interpolation between fermionic and bosonic virial coefficients, although these coefficients are singular for theta = pi/2.
Resumo:
The interplay between temperature and q-deformation in the phase transition properties of many-body systems is studied in the particular framework of the collective q-deformed fermionic Lipkin model. It is shown that in phase transitions occuring in many-fermion systems described by su(2)q-like models are strongly influenced by the q-deformation.
Resumo:
Both the parity-breaking and parity-invariant parts of the effective action for the gauge field in QED 3 with massive fermions at finite temperature are obtained exactly. This is feasible because we use a particular configuration of the background gauge field, namely a constant magnetic field and a time-dependent time component of the background gauge field. Our results allow us to compute exactly physically interesting quantities such as the induced charge density and fermion condensate whose dependence on the temperature, fermion mass and gauge field is discussed. ©1999 The American Physical Society.
Resumo:
We discuss the asymptotic properties of quantum states density for fundamental p-branes which can yield a microscopic interpretation of the thermodynamic quantities in M-theory. The matching of the BPS part of spectrum for superstring and supermembrane gives the possibility of getting membrane's results via string calculations. In the weak coupling limit of M-theory, the critical behavior coincides with the first-order phase transition in the standard string theory at temperature less than the Hagedorn's temperature T-H. The critical temperature at large coupling constant is computed by considering M-theory on manifold with topology R-9 circle times T-2. Alternatively we argue that any finite temperature can be introduced in the framework of membrane thermodynamics.
Resumo:
We consider a [ud](2)(s) over bar current, in the finite-density QCD sum rule approach, to investigate the scalar and vector self-energies of the recently observed pentaquark state Theta(+)(1540), propagating in nuclear matter. We find that, opposite to what was obtained for the nucleon, the vector self-energy is negative, and the scalar self-energy is positive. There is a substantial cancellation between them resulting in an attractive net self-energy of the same order as in the nucleon case. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We examine a Lipkin based two-level pairing model at finite temperature and in the thermodynamic limit. Whereas at T = 0 the model exhibits a superconducting ground state for sufficiently high values of the coupling constant, a partially superconducting phase in which some of the particles are paired, is found to survive at high temperatures in a special treatment. This phase is a mixture of abnormally-occupied eigenstates, which lie at higher energy, of the interactionless model Hamiltonian.
Resumo:
The critical current and melting temperature of a vortex system are analyzed. Calculations are made for a two-dimensional film at finite temperature with two kinds of periodic pinning: hexagonal and Kagomé. A transport current parallel and perpendicular to the main axis of the pinning arrays is applied and molecular dynamics simulations are used to calculate the vortex velocities to obtain the critical currents. The structure factor and displacements of vortices at zero transport current are used to obtain the melting temperature for both pinning arrays. The critical currents are higher for the hexagonal pinning lattice and anisotropic for both pinning arrays. This anisotropy is stronger with temperature for the hexagonal array. For the Kagomé pinning lattice, our analysis shows a multi stage phase melting; that is, as we increase the temperature, each different dynamic phase melts before reaching the melting temperature. Both the melting temperature and critical currents are larger for the hexagonal lattice, indicating the role for the interstitial vortices in decreasing the pinning strength. © 2012 Springer Science+Business Media New York.
Resumo:
In this work we rederive the Lamb-Retherford energy shift for an atomic electron in the presence of a thermal radiation. Using the Dalibard, Dupont-Roc and Cohen-Tannoudji (DDC) formalism, where physical observables are expressed as convolutions of suitable statistical functions, we construct the electromagnetic field propagator of thermo field dynamics in the Coulomb gauge in order to investigate finite temperature effects on the atomic energy levels. In the same context, we also analyze the problem of the ground state stability.
Resumo:
In this Letter, an entropy operator for the general unitary SU(1, 1) TFD formulation is proposed and used to lead a bosonic system from zero to finite temperature. Namely, considering the closed bosonic string as the target system, the entropy operator is used to construct the thermal vacuum. The behaviour of such a state under the breve conjugation rules is analyzed and it was shown that the breve conjugation does not affect the thermal effects. From this thermal vacuum the thermal energy, the entropy and the free energy of the closed bosonic string are calculated and the appropriated thermal distribution for the system is found after the free energy minimization. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Using the functional integral formalism for the statistical generating functional in the statistical (finite temperature) quantum field theory, we prove the equivalence of many-photon Greens functions in the Duffin-Kennner-Petiau and Klein-Gordon-Fock statistical quantum field theories. As an illustration, we calculate the one-loop polarization operators in both theories and demonstrate their coincidence.
Resumo:
In this Letter a topological interpretation for the string thermal vacuum in the thermo field dynamics (TFD) approach is given. As a consequence, the relationship between the imaginary time and TFD formalisms is achieved when both are used to study closed strings at finite temperature. The TFD approach starts by duplicating the system's degrees of freedom, defining an auxiliary (tilde) string. In order to lead the system to finite temperature a Bogoliubov transformation is implemented. We show that the effect of this transformation is to glue together the string and the tilde string to obtain a torus. The thermal vacuum appears as the boundary state for this identification. Also, from the thermal state condition, a Kubo-Martin-Schwinger condition for the torus topology is derived. © 2005 Elsevier B.V. All rights reserved.