178 resultados para Fibroblast growth factors
Resumo:
Paracrine cell signaling is thought to be important for ovarian follicle development, and a role for some members of the fibroblast growth factor (FGF) family have been suggested. In the present study, we tested the hypothesis that FGF-8 and its cognate receptors (FGFR-3c and FGFR-4) are expressed in bovine preantral follicles. Reverse transcription-polymerase chain reaction was used to amplify bovine FGF-8, FGFR-3c, and FGFR-4 from preantral follicle samples and a variety of fetal and adult tissues. All three genes were widely expressed in fetal tissues, with a restricted expression pattern in adult tissues. FGF-8 and FGFR-3c were expressed in secondary follicles in 70% of fetuses examined, whereas FGFR-4 expression was significantly less frequent (20%). FGFR-3c expression frequency was significantly lower in primordial compared to secondary follicles, and FGF-8 expression showed a similar trend. FGFR-4 was only observed when all follicle classes of an individual were expressing both FGF-8 and FGFR-3c. We conclude that FGF-8 and its receptors are expressed in preantral follicles in a developmentally regulated manner. (C) 2005 Wiley-Liss, Inc.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
To investigate the alterations of glucose homeostasis and variables of the insulin-like growth factor-I (IGF- 1) growth system in sedentary and trained diabetic (TD) rats, Wistar rats were divided into sedentary control (SC), trained control (TC), sedentary diabetic (SD), and TD groups. Diabetes was induced by Alloxan (35 mg kg(-1) b.w.). Training program consisted of swimming 5 days week(-1), 1 h day(-1), during 8 weeks. Rats were sacrificed and blood was collected for determinations of serum glucose, insulin, growth hormone (GH), IGF-1, and IGF binding protein-3(IGFBP-3). Muscle and liver were removed to evaluate glycogen content. Cerebellum was extracted to determinate IGF-1 content. Diabetes decreased serum GH, IGF-1, IGFBP-3, liver glycogen, and cerebellum IGF-1 peptide content in baseline condition. Physical training recovered liver glycogen and increased serum and cerebellum IGF-1 peptide in diabetic rats. Physical training induces important metabolic and hormonal alterations that are associated with an improvement in glucose homeostasis and serum and cerebellum IGF-1 concentrations. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Paracrine cell signaling is believed to be important for ovarian follicle development, and a role for some members of the fibroblast growth factor (FGF) family has been suggested. In the present study, we tested the hypothesis that FGF-8 and its cognate receptors (FGFR3c and FGFR4) are expressed in bovine antral follicles. RT-PCR was used to analyze bovine Fgf8, Fgfr3c and Fgfr4 mRNA levels in oocytes, and granulosa and theca cells. Fgf8 expression was detected in oocytes and in granulosa and theca cells; this expression pattern differs from that reported in rodents. Granulosa and theca cells, but not oocytes, expressed Fgfr3c, and expression in granulosa cells increased significantly with follicle estradiol content, a major indicator of follicle health. Fgfr4 expression was restricted to theca cells in the follicle, and decreased significantly with increasing follicle size. To investigate the potential regulation of Fgfr3c expression in the bovine granulosa, cells were cultured in serum-free medium with FSH or IGF-I; gene expression was upregulated by FSH but not by IGF-I. The FSH-responsive and developmentally regulated patterns of Fgfr3c mRNA expression suggest that this receptor is a potential mediator of paracrine signaling to granulosa cells during antral follicle growth in cattle.
Resumo:
Considerable attention is currently paid to oocyte-derived secreted factors that act upon cumulus and granulosa cells. Also important for follicle development are somatic cell-derived secreted factors. This is illustrated by the ability of granulosa cell-derived Kit ligand (KITL) to promote primordial follicle activation, and the loss of follicle development that accompanies KITL gene disruption. This review summarises our current understanding of somatic cell factors during both preantral and antral follicle growth, involving not only signalling from granulosa cells to the oocyte, but also signalling between granulosa and theca cells. Principal granulosa cell-derived factors include activin, anti-Mullerian hormone (AMH), bone morphogenetic proteins (BMPs) and fibroblast growth factors (FGFs). Theca cells also secrete BMPs and FGFs. The interplay between these factors is equally important for follicle growth as the activity of oocyte-derived factors.