63 resultados para Ferrooxidans
Resumo:
Qualitative and quantitative oxidation tests of H2S in acid solution were carried out using Thiobacillus ferrooxidans and Thiobacillus thiooxidans species, Experiments were performed using solutions of H2SO4 (pH 2.0) containing H2S in initial concentrations ranging from 5 to 100 ppm. in shake flasks at 150 rpm and 30(circle)C. In these solution, this gas was not very stable and was quickly liberated. However, at low concentration (less than 5 ppm) it becomes stable and could only be removed from solution by oxidation. The results obtained indicated that the presence of either T. ferrooxidans or T. thiooxidans causes a significant reduction in H,S concentration (more than 99%) in relation to the sterile control, No differences in oxidation efficiency between these two species were detected. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Solution- and solid-phase changes associated with galena (PbS) and sphalerite (ZnS) oxidation by T. ferrooxidans and T. thiooxidans, were determined. In experiments with galena, anglesite (PbSO4) was detected as a solid-phase product in biotic and abiotic experiments. In T. ferrooxidans cultures supplemented with FeSO4, jarosite [MFe3 (SO4)(2) (OH)(6)] was also detected as a new solid phase product, whereas SO was not detected in the residues. In sphalerite experiments, minor amounts of SO accumulated in FeSO4-amended sphalerite media with or without T. ferrooxidans or T. thiooxidans. Jarosite was only detected in T. ferrooxidans culture with FeSO4. By comparison with T. thiooxidans, T. ferrooxidans was more efficient in the oxidation of galena and sphalerite.
Electrochemical noise analysis of bioleaching of bornite (Cu5FeS4) by Acidithiobacillus ferrooxidans
Resumo:
Electrochemical noise (EN) is a generic term describing the phenomenon of spontaneous fluctuations of potential or current noise of electrochemical systems. Since this technique provides a non-destructive condition for investigating corrosion processes, it can be useful to study the electrochemical oxidation of mineral sulfides by microorganisms, a process known as bacterial leaching of metals. This technique was utilized to investigate the dissolution of a bornite electrode in the absence (first 79 h) and after the addition of Acidithiobacillus ferrooxidans (next 113 h) in salts mineral medium at pH 1.8, without addition of the energy source (Fe2+ ions) for this chemolithotrophic bacterium. Potential and current noise data have been determined simultaneously with two identical working bornite electrodes which were linked by a zero resistance ammeter (ZRA). The mean potential, E-coup, coupling current, I-coup, standard deviations of potential and current noise fluctuations and noise resistance, R-n, have been obtained for coupled bornite electrodes. Noise measurements were recorded twice a day in an unstirred solution at 30 degrees C. Significant changes in these parameters were observed when the A. ferrooxidans suspension was added, related with bacterial activity on reduced species present in the sulfide moisture (Fe2+, S2-). ENA was a suitable tool for monitoring the changes of the corrosion behavior of bornite due to the presence of bacterium. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
A research-grade mineral sample that contained marcasite and pyrite (FeS2) was subjected to the oxidation by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Oxidation of FeS2 by A. ferrooxidans produced acid, and the redox potential increased with sulfide dissolution and the oxidation of Fe2+. jarosite was detected in solids from spent cultures. Preferential oxidation of either mineral was not consistently observed across all treatments. Neither iron sulfide was oxidized by A. thiooxidans. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Respirometric experiments demonstrated that the oxygen uptake by Thiobacillus ferrooxidans strain LR was not inhibited in the presence of 200 mM copper. Copper-treated and untreated cells from this T. ferrooxidans strain were used in growth experiments in the presence of cadmium, copper, nickel and zinc. Growth in the presence of copper was improved by the copper-treated cells. However, no growth was observed for these cells, within 190 h of culture, when cadmium, nickel and zinc were added to the media. Changes in the total protein synthesis pattern were detected by two-dimensional polyacrylamide gel electrophoresis for T. ferrooxidans LR cells grown in the presence of different heavy metals. Specific proteins were induced by copper (16, 28 and 42 kDa) and cadmium (66 kDa), whereas proteins that had their synthesis repressed were observed for all the heavy metals tested. Protein induction was also observed in the cytosolic and membrane fractions from T. ferrooxidans LR cells grown in the presence of copper. The level of protein phosphorylation was increased in the presence of this metal.
Resumo:
The biooxidation of ferrous ion into ferric ion by Acidithiobacillus ferrooxidans can be potentially used for the removal of H2S from industrial gases. In this work, Fe3+ ions were obtained through the oxidation of Fe2+ using the LR strain of At. ferrooxidans immobilized in PVC stands in a pilot-scale bioreactor, while H2S was removed in an absorption tower equipped with Rasching rings. At. ferrooxidans LR strain cells were immobilized by inoculating the bacterium in a Fe2+-mineral medium and percolating it through the support. After complete Fe2+ oxidation, which took around 90 h, the reactor was washed several times with sulfuric acid (pH 1.7) before a new cycle was started. Four additional cycles using fresh Fe2+ mineral medium were then run. During these colonization cycles, the time required for complete iron oxidation decreased, dropping to about 60 h in the last cycle. The batch experiments in the H2S gas removal trials resulted in a gas removal rate of about 98-99% under the operational conditions employed. In the continuous experiments with the bioreactor coupled to the gas absorption column, a gas removal efficiency of almost 100% was reached after 500 min. Precipitate containing mainly sulfur formed during the experimental trial was identified by EDX. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The PCR-based technique, involving the random amplification of polymorphic DNA (RAPD), was optimized and used for assessing genomic variability among eight Thiobacillus ferrooxidans strains. RAPD fingerprints presented variation for the thirty primers used, giving a total of 269 polymorphic bands. Similarity coefficients between the strains were calculated, and UPGMA cluster analysis was used to generate a dendrogram showing relationships among them. Most primers divided T. ferrooxidans strains in two distinct groups - Group 1: S, SSP, V3, AMF and Group 2: CMV, FG-460, I-35, LR. We observed that the T. ferrooxidans strains used in this work have a high degree of genomic diversity and that RAPD is a powerful method to differentiate them.
Resumo:
Nineteen strains of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans, including 12 strains isolated from coal, copper, gold and uranium mines in Brazil, strains isolated from similar sources in other countries and the type strains of the two species were characterized together with the type strain of A. caldus by using a combination of molecular systematic methods, namely ribotyping, BOX- and ERIC-PCR and DNA-DNA hybridization assays. Data derived from the molecular fingerprinting analyses showed that the tested strains encompassed a high degree of genetic variability. Two of the Brazilian A. ferrooxidans organisms (strains SSP and PCE) isolated from acid coal mine waste and uranium mine effluent, respectively, and A. thiooxidans strain DAMS, isolated from uranium mine effluent, were the most genetically divergent organisms. The DNA-DNA hybridization data did not support the allocation of Acidithiobacillus strain SSP to the A. ferrooxidans genomic species, as it shared only just over 40% DNA relatedness with the type strain of the species. Acidithiobacillus strain SSP was not clearly related to A. ferrooxidans in the 16S rDNA tree.
Resumo:
In this work, the oxidizing action of a native strain type A. ferrooxidans on a sulphide containing a predominance of arsenopyrite and pyrite has been evaluated. Incubation of the A. ferrooxidans strain in flasks containing 200 mL of T&K medium with the ore (particle size of 106 mu m) at pulp density 8% (w/v) at 35 degrees C on a rotary shaker at 200 rpm resulted in preferential oxidation of the arsenopyrite and the mobilization of 88% of the arsenic in 25 days. Mineralogical characterization of the residue after biooxidation was carried out with FTIR. XRD and SEM/XEDS techniques. An in situ oxidation of the arsenopyrite is suggested on the basis of the frequent appearance of jarosite pseudomorph replacing arsenopyrite, in which the transformations Fe(2+) -> Fe(3+), S(-2) -> S(+6) and As(-1) -> As(+3) -> As(+5) occur for the most part without formation of soluble intermediates, resulting in a type of jarosite that typically contains high concentrations of arsenic (type A-jarosite). However, during pyrite oxidation, dissolution of the constituent Fe and S predominates, which is evidenced by corrosion of pyrite particles with formation of pits, generating a type of jarosite with high quantities of K (type B-jarosite). Lastly, a third type of jarosite (type C-jarosite) also precipitated forming a thin film that covered the grains of pyrite principally. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Oxidation of research-grade covellite was investigated in respirometric and growth experiments with Thiobacillus ferrooxidans. Covellite was directly oxidized by T. ferrooxidans in respirometric experiments, but the pH of mineral salts medium increased to prohibitively high values because of high sulfide concentrations. In glycine-H 2SO 4 buffered medium the pH remained steady and the oxygen uptake activity of T. ferrooxidans was not inhibited. In cultures growing with covellite as the sole source of energy, the pH increased to about 4. Redox potential increased to 500-600 mV during bacterial oxidation of covellite in the presence and absence of additional Fe 2+, whereas it remained mostly at about 350 mV in abiotic control. Jarosite was a major solid-phase product in T. ferrooxidans cultures. The solubilization of copper from covellite in inoculated flasks was higher than that obtained in control flasks and was not enhanced in the presence of additional Fe 2+.The sample also contained bornite (Cu 5FeS 4) which released iron in solution under all experimental conditions. Accumulation of S 0 was apparent only in inoculated covellite samples. © 1997 Elsevier B.V. All rights reserved.
Resumo:
The oxidative dissolution of research-grade chalcopyrite was characterized in respirometric and growth experiments with Thiobacillus ferrooxidans. In respirometric experiments with chalcopyrite, the pH of mineral salts medium increased to values that inhibited the oxygen uptake activity of T. ferrooxidans. In glycine-H 2SO 4 buffered medium the pH remained stable and oxygen uptake was not inhibited. In cultures growing with chalcopyrite as the sole source of energy, pH changes were only minor during the incubation. The redox potential values increased to about 600 mV during the bacterial oxidation of chalcopyrite in the presence and absence of additional Fe 2+, while they remained at about 350 mV in abiotic control flasks. Iron in chalcopyrite was solubilized and oxidized to Fe 3+ by T. ferrooxidans. In the abiotic controls, by comparison, less iron was solubilized and it remained as Fe 2+. Jarosite was a major solid- phase product in T. ferrooxidans cultures. The solub'flization of copper from chalcopyrite in inoculated flasks was enhanced in the presence of additional Fe 2+.Accumulation of S 0, reflecting partial oxidation of the S-entity of chalcopyrite, was apparent from the x-ray diffraction analysis of solid residues from the inoculated flasks as well the abiotic controls. © 1997 Elsevier B.V. All rights reserved.
Resumo:
Bornite electrodes were characterized in the absence or in the presence of Acidithiobacillus ferrooxidans, which is an important microorganism involved in metal bioleaching processes. The presence of the bacterium modified the mineral/electrolyte interface, increasing the corrosion rate, as revealed by interferometric, AEM, ICP and EIS analyses. As a consequence of bacterial activity the electrode became porous, increasing its surface heterogeneity. This behavior was correlated with the evolution of impedance diagrams obtained during the time course of experiments. The main difference in these diagrams was the presence of an inductive feature (up to 44 h), which was related to bacterial action on the mineral dissolution, better than to its adhesion on the bornite. The total real impedance measured in presence of the bacterium was about 10 times lower than in its absence, due to the acceleration of the mineral dissolution, because an oxidant environment was maintained.