96 resultados para FRIEND LEUKEMIA INTEGRATION FACTOR 1
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Interferon regulatory factor 1 (IRF1) is functionally diverse in the regulation of immune response and is considered to be an important candidate gene for studying disease susceptibility in mammals. In this paper, we characterized the whole sequence of the IRF1 gene in river buffalo (Bubalus bubalis) and compared genomic and the amino acid sequences between different species. The buffalo IRF1 gene was 7099 bp long and organized into 10 exons and nine introns. Its molecular structure showed exactly the same number of exons (10) and introns (nine) in bovids, mice, horses, humans, and chickens. However, rats did not have exon 5, but had the largest exon 4, which suggests that exon 5 was incorporated into exon 4. The coding and the amino acid sequences of the gene showed that identity varied from 73 to 99% at the coding sequence level and from 61 to 100% at the amino acid level when compared with other mammals and chickens. Comparative analysis of the gene sequence between two different buffalo breeds, Murrah and Mediterranean, revealed six potential SNPs that are primarily located in the 5' and 3'UTRs.
Resumo:
The growth hormone 1 gene (GH1) is a candidate gene for body weight and weight gain in cattle since it plays a fundamental role in growth regulation. We investigated the GH1 gene AluI and DdeI restriction enzyme polymorphisms, located 149 bp apart in the cattle genome, as possible markers of the production potential of Canchim crossbreed cattle, a 5/8 Charolais (Bos taurus) and 3/8 Nelore (Bos indicus) breed developed in Brazil, by evaluating the birth weight, weaning weight, yearling weight and plasma insulin-like growth factor-1 (IGF-1) concentration of 7 month to 10 months old Canchim calves (n = 204) of known genealogy and which had been genotyped for the AluI and DdeI markers. Our results showed significant effect (p < 0.05) between the homozygous DdeI+/DdeI+ polymorphism and the estimated breeding value for weaning weight (ESB-WW), while the AluI leucine homozygous (L/L) and leucine/valine (L/V) heterozygous polymorphisms showed no significant effect on the traits studied. The restriction sites of the two enzymes led to the formation of haplotypes which also exerted a significant effect (p < 0.05) on the ESB-WW, with the largest difference being 8.5 kg in favor of the homozygous L plus DdeI+/L plus DdeI+ genotype over the heterozygous L plus DdeI-/V plus DdeI+ genotype.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The influence of moderate physical training on serum growth hormone (GH), insulin-like growth factor -1 (IGF-1) and binding protein ( IGFBP-3) in experimental diabetic rats was investigated. Male Wistar rats were divided into 4 groups, sedentary control (SC), trained control (TC), sedentary diabetic (SD) and trained diabetic (TD). Experimental diabetes was induced of Alloxan (35mg/b.w.) the training program consisted by swimming 5 days/week, 1 h/day, supporting a load of 2.5% b.w., during 6 weeks. Then, the rats were sacrificed and blood was collected for determinations of serum glucose, insulin, GH, IGF-1 and IGFBP-3. Samples of liver were used to evaluate glycogen, protein and DNA contents. The results were analyzed by ANOVA, and Bonferroni test and the significance level was set at 2.5%. Diabetes decreased serum GH, IGF-1, IGFBP-3 and liver glycogen stores in SD group. Physical training promoted increase in serum IGF-1 in both TC and TD groups (SC=82 +/- 15; TC= 1 03 +/- 13; SD=77 +/- 16; TD= 112 +/- 29 ng/ml) and liver glycogen store in TD group when compared to SD (SC=5.2 +/- 1.2; TC= 6.2 +/- 1; SD=2 +/- 0.5; TD=5 +/- 1.8 mg/100mg). Therefore, physical training contributes to the increase in liver glycogen content and to rise of insulin-like growth factor level in diabetic rats. It was concluded that moderate physical training promotes important adaptations related to GH-IGF-1 axis in diabetic organisms.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background Diet composition is one of the factors that may contribute to intraindividual variability in the anticoagulant response to warfarin. Aim of the study To determine the associations between food pattern and anticoagulant response to warfarin in a group of Brazilian patients with vascular disease. Methods Recent and usual food intakes were assessed in 115 patients receiving warfarin; and corresponding plasma phylloquinone (vitamin K-1), serum triglyceride concentrations, prothrombin time (PT), and International Normalized Ratio (INR) were determined. A factor analysis was used to examine the association of specific foods and biochemical variables with anticoagulant data. Results Mean age was 59 +/- 15 years. Inadequate anticoagulation, defined as values of INR 2 or 3, was found in 48% of the patients. Soybean oil and kidney beans were the primary food sources of phylloquinone intake. Factor analysis yielded four separate factors, explaining 56.4% of the total variance in the data set. The factor analysis revealed that intakes of kidney beans and soybean oil, 24-h recall of phylloquinone intake, PT and INR loaded significantly on factor 1. Triglycerides, PT, INR, plasma phylloquinone, and duration of anticoagulation therapy loaded on factor 3. Conclusion Fluctuations in phylloquinone intake, particularly from kidney beans, and plasma phylloquinone concentrations were associated with variation in measures of anticoagulation (PT and INR) in a Brazilian group of patients with vascular disease.
Resumo:
The retrovirus HTLV-1 is the etiological agent of the adult T-cell leukemia and HTLV-1 associated myelopathy/tropical spastic paraparesis. The proviral genome has 9,032 base pairs, showing regulatory and structural genes. The env gene encodes for the transmembrane glycoprotein gp 21. The development of methodologies for heterologous protein expression, as well as the acquisition of a cellular line that constituently expresses the recombinant, were the main goals of this work. The DNA fragment that encodes for gp 21 was amplified by nested-PCR and cloned into a pCR2.1-TOPO vector. After which, a sub-cloning was realized using the expressing vector pcDNA3.1+. The transfection of mammalian cells HEK 293 was performed transitorily and permanently. Production of the recombinant gp 21 was confirmed by flux cytometry experiments and the cell line producing protein will be used in immunogenicity assays.
Resumo:
Aim. This study aimed to observe the morphological and molecular effect of laminin-1 doping to nanostructured implant surfaces in a rabbit model. Materials and Methods. Nanostructured implants were coated with laminin-1 (test; dilution, 100 g/mL) and inserted into the rabbit tibiae. Noncoated implants were used as controls. After 2 weeks of healing, the implants were removed and subjected to morphological analysis using scanning electron microscopy (SEM) and gene expression analysis using the real-time reverse transcriptase-polymerase chain reaction (RT-PCR). Results. SEM revealed bony tissue attachment for both control and test implants. Real-time RT-PCR analysis showed that the expression of osteoblast markers RUNX-2, osteocalcin, alkaline phosphatase, and collagen I was higher (1.62-fold, 1.53-fold, 1.97-fold, and 1.04-fold, resp.) for the implants modified by laminin-1 relative to the control. All osteoclast markers investigated in the study presented higher expression on the test implants than controls as follows: tartrate-resistant acid phosphatase (1.67-fold), calcitonin receptor (1.35-fold), and ATPase (1.25-fold). The test implants demonstrated higher expression of inflammatory markers interleukin-10 (1.53-fold) and tumour necrosis factor-α (1.61-fold) relative to controls. Conclusion. The protein-doped surface showed higher gene expression of typical genes involved in the osseointegration cascade than the control surface. © 2012 Humberto Osvaldo Schwartz-Filho et al.
Resumo:
The expression of prognostic markers in cancer has become important in diagnostic routine and research. A high mitotic rate compromises the individual cell access to oxygen and nutrients, due to reduced blood supply. Cells undertake adaptive measures such as vascular endothelial growth factor (VEGF), expressed under the control of hypoxia-inducible factor-1α (HIF-1α). CD34 is an endothelial marker which can show the presence and distribution of blood vessels. This study evaluated the presence and relative expression of VEGF, HIF-1α and CD34 using immunohistochemistry of 60 breast tumors and double staining, correlating the findings with clinical and pathological variables. High VEGF expression was correlated with low cell proliferation, lymph node-negative, smaller tumor size and patients not receiving hormone therapy. High HIF-1α expression predominated in younger (<50-year) patients, subjected to neo-adjuvant therapy and in p53-negative tumors. Absence of metastasis, radiotherapy or hormone treatment, and estrogen receptor (ER)-positive tumors showed high CD34 immunoreactivity. We suggest that the angiogenic factors VEGF, HIF-1α and CD34 are important in breast cancer progression and their abundance in breast tumors has prognostic and predictive value. Crown Copyright © 2013.
Resumo:
Chronic inflammatory processes close to bone often lead to loss of bone in diseases such as rheumatoid arthritis, periodontitis, loosened joint prosthesis and tooth implants. This is mainly due to local formation of bone resorbing osteoclasts which degrade bone without any subsequent coupling to new bone formation. Crucial for osteoclastogenesis is stimulation of mononuclear osteoclast progenitors by macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) which induces their differentiation along the osteoclastic lineage and the fusion to mature, multinucleated osteoclasts. M-CSF and RANKL are produced by osteoblasts/ osteocytes and by synovial and periodontal fibroblasts and the expression is regulated by pro- and anti-inflammatory cytokines. These cytokines also regulate osteoclastic differentiation by direct effects on the progenitor cells. In the present overview, we introduce the basic concepts of osteoclast progenitor cell differentiation and summarize the current knowledge on cytokines stimulating and inhibiting osteoclastogenesis by direct and indirect mechanisms. © Informa Healthcare USA, Inc.
Resumo:
Periodontitis is an inflammatory disease caused by pathogenic microorganisms and characterized by the destruction of the periodontium. Obese individuals have an increased risk of periodontitis, and elevated circulating levels of adipokines, such as nicotinamide phosphoribosyltransferase (NAMPT), may be a pathomechanistic link between both diseases. The aim of this in vitro study was to examine the regulation of periodontal ligament (PDL) cells by NAMPT and its production under inflammatory and infectious conditions. NAMPT caused a significant upregulation of 9 genes and downregulation of 3 genes, as analyzed by microarray analysis. Eight of these genes could be confirmed by real-time PCR: NAMPT induced a significant upregulation of EGR1, MMP-1, SYT7, ITPKA, CCL2, NTM, IGF2BP3, and NRP1. NAMPT also increased significantly the MMP-1 and CCL2 protein synthesis. NAMPT was significantly induced by interleukin-1β and the periodontal microorganism P. gingivalis. NAMPT may contribute to periodontitis through upregulation of MMP-1 and CCL2 in PDL cells. Increased NAMPT levels, as found in obesity, may therefore represent a mechanism whereby obesity could confer an increased risk of periodontitis. Furthermore, microbial and inflammatory signals may enhance the NAMPT synthesis in PDL cells and thereby contribute to the increased gingival and serum levels of this adipokine, as found in periodontitis. © 2013 Marjan Nokhbehsaim et al.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objective: This study evaluated the effect of quantity of resin composite, C-factor, and geometry in Class V restorations on shrinkage stress after bulk fill insertion of resin using two-dimensional finite element analysis.Methods: An image of a buccolingual longitudinal plane in the middle of an upper first premolar and supporting tissues was used for modeling 10 groups: cylindrical cavity, erosion, and abfraction lesions with the same C-factor (1.57), a second cylindrical cavity and abfraction lesion with the same quantity of resin (QR) as the erosion lesion, and then all repeated with a bevel on the occlusal cavosurface angle. The 10 groups were imported into Ansys 13.0 for two-dimensional finite element analysis. The mesh was built with 30,000 triangle and square elements of 0.1 mm in length for all the models. All materials were considered isotropic, homogeneous, elastic, and linear, and the resin composite shrinkage was simulated by thermal analogy. The maximum principal (MPS) and von Mises stresses (VMS) were analyzed for comparing the behavior of the groups.Results: Different values of angles for the cavosurface margin in enamel and dentin were obtained for all groups and the higher the angle, the lower the stress concentration. When the groups with the same C-factor and QR were compared, the erosion shape cavity showed the highest MPS and VMS values, and abfraction shape, the lowest. A cavosurface bevel decreased the stress values on the occlusal margin. The geometry factor overcame the effects of C-factor and QR in some situations.Conclusion: Within the limitations of the current methodology, it is possible to conclude that the combination of all variables studied influences the stress, but the geometry is the most important factor to be considered by the operator.