29 resultados para Exhibiting Slow Equilibria
Resumo:
This article extends results contained in Buzzi et al. (2006) [4], Llibre et al. (2007, 2008) [12,13] concerning the dynamics of non-smooth systems. In those papers a piecewise C-k discontinuous vector field Z on R-n is considered when the discontinuities are concentrated on a codimension one submanifold. In this paper our aim is to study the dynamics of a discontinuous system when its discontinuity set belongs to a general class of algebraic sets. In order to do this we first consider F :U -> R a polynomial function defined on the open subset U subset of R-n. The set F-1 (0) divides U into subdomains U-1, U-2,...,U-k, with border F-1(0). These subdomains provide a Whitney stratification on U. We consider Z(i) :U-i -> R-n smooth vector fields and we get Z = (Z(1),...., Z(k)) a discontinuous vector field with discontinuities in F-1(0). Our approach combines several techniques such as epsilon-regularization process, blowing-up method and singular perturbation theory. Recall that an approximation of a discontinuous vector field Z by a one parameter family of continuous vector fields is called an epsilon-regularization of Z (see Sotomayor and Teixeira, 1996 [18]; Llibre and Teixeira, 1997 [15]). Systems as discussed in this paper turn out to be relevant for problems in control theory (Minorsky, 1969 [16]), in systems with hysteresis (Seidman, 2006 [17]) and in mechanical systems with impacts (di Bernardo et al., 2008 [5]). (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The protonation of 4-dimethylaminobenzylidenepyruvate (DMBP) and 2-chloro-4-dimethylaminobenzylidenepyruvate (2-CI-DMBP) and their complex formation with Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Pb(II), Cd(II) and Al(III) have been studied by potentiometric and spectrophotometric methods at 25 °C and ionic strength 0.500 M, held with sodium perchlorate. The stability order found for 1 :1 complexes of both ligands is Al(III) > Cu(II) > Pb(II) > Ni(II) > Zn(II) > Co(II) > Cd(II) > Mn(II). The stability changes move in the same direction as the pKa of the ligands. The results are compared with literature values reported for metal ion pyruvate systems. Thermodynamic stabilities of ternary complexes formed in Cu(II)-B-L- systems, where B = 2,2′-bipyridyl (bipy), ethylenediamine or glycinate and L = DMBP or 2-CI-DMBP, were also determined. The Cu(bipy)L+ species are more stable than would be expected on purely statistical grounds. The importance of the :t system associated with bipy on the enhanced stability of its mixed ligand complexes is stressed. Analytical applications of the investigated ligands are outlined.
Resumo:
Background: This study was undertaken to test the hypothesis that diabetes and pregnancy detrimentally affect the normal function of urethral striated muscles in rats, providing a model for additional studies related to urinary incontinence. The aim of this study was to evaluate morphological alterations in the urethral striated muscles of diabetic pregnant rats. Materials and Methods: Twenty female Wistar rats were distributed into four experimental groups of five rats as follows: virgin, pregnant, diabetic virgin, and diabetic pregnant. Diabetes was induced using streptozotocin administration (40 mg/kg i.v.). The rats were lethally anesthetized, and the urethra and vagina were extracted as a unit. Cryostat sections (6 μm thick) were cut and stained with hematoxylin-eosin, and immunohistochemical procedures were performed and subjected to morphological and semi quantitative analysis. Results: The urethral striated muscle from the diabetic pregnant rats presented with the following variations: thinning and atrophy, disorganization and disruption associated with the colocalization of fast and slow fibers and a steady decrease in the proportion of fast vs slow fibers. Conclusion: Diabetes and pregnancy impair the urethral striated muscle and alter its fiber type distribution. © Copyright G. Marini et al., 2011.
Resumo:
In this work, we synthesized a novel series of hydrogels composed of polyacrylamide (PAAm), methylcellulose (MC), and calcic montmorillonite (MMt) appropriate for the controlled release of fertilizers, where the components presented a synergistic effect, giving very high fertilizer loading in their structure. The synthesized hydrogel was characterized in relation to morphological, hydrophilic, spectroscopic, structural, thermal, and kinetic properties. After those characterizations, the application potential was verified through sorption and desorption studies of a nitrogenated fertilizer, urea (CO(NH2)2). The swelling degree results showed that the clay loading considerably reduces the water absorption capability; however, the hydrolysis process favored the urea adsorption in the hydrogel nanocomposites, increasing the load content according to the increase of the clay mass. The FTIR spectra indicated that there was incorporation of the clay with the polymeric matrix of the hydrogel and that incorporation increased the water absorption speed (indicated by the kinetic constant k). By an X-ray diffraction technique, good nanodispersion (intercalation) and exfoliation of the clay platelets in the hydrogel matrix were observed. Furthermore, the presence of the montmorillonite in the hydrogel caused the system to liberate the nutrient in a more controlled manner than that with the neat hydrogel in different pH ranges. In conclusion, excellent results were obtained for the controlled desorption of urea, highlighting the hydrolyzed hydrogels containing 50% calcic montmorillonite. This system presented the best desorption results, releasing larger amounts of nutrient and almost 200 times slower than pure urea, i.e., without hydrogel. The total values of nutrients present in the system show that this material is potentially viable for application in agriculture as a nutrient carrier vehicle. © 2013 American Chemical Society.
Adaptabilidade diferencial das variantes moleculares slow e fast da esterase-5 de Drosophila mulleri
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The Orchidaceae is one of the most numerous and diversified families in the Plant Kingdom. Miltonia flavescens Lindl. is a native orchid to the southern region of Brazil. Studies related to the nutrition and fertilization of orchids are scarce, specific and existent only for few species. The objective of this work was to evaluate the effect of different doses of a slow release fertilizer (Osmocote (R) 9/15/12 + micro) on the development of M. flavescens var. stellata Regel cultivated in pots with pine bark and coconut fiber (1:1, v:v) as the substrate. The treatments consisted of: no fertilizer application (control), application of 2.5 g, 5 g and 10 g of fertilizer per liter of substrate. The experimental design was set in randomized blocks, with five replications and three plants per plot. The experiment was carried out along 25 months and the fertilizer was applied every five months. The evaluated plant parameters were: length of the longest pseudobulb, number of pseudobulbs, diameter of pseudobulbs, number of shoots, number of leaves and flowering. There was a significant increment on all evaluated characteristics with the increase of the fertilizer dose. The highest dose provided a more profuse flowering, with a larger number of flower stems and flowers, in addition to bigger flower stems and flowers. These results show that the supply of nutrients in an appropriate amount is of a great importance for the development and flowering of M. flavescens.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Influence of N-acetylcysteine on oxidative stress in slow-twitch soleus muscle of heart failure rats
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)