19 resultados para Evaporation
Resumo:
Alumina thin films have been obtained by resistive evaporation of Al layer, followed by thermal oxidation by means of annealing in appropriate atmosphere (air or O2-rich), with variation of annealing time and temperature. Optical and structural properties of the investigated films reveal that the temperature of 550 °C is responsible for reasonable oxidation, which is accelerated up to 8 times for O2-rich atmosphere. Results of surface electrical resistivity and Raman spectroscopy are in good agreement with these findings. Surprisingly, X-ray and Raman data suggest also the crystallization of Si nuclei at glass substrate-alumina interface, which would come from the soda-lime glass used as substrate. © 2013 Elsevier Ltd and Techna Group S.r.l.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Alumina thin films have been obtained by resistive evaporation of Al layer, followed by thermal oxidation achieved by annealing in appropriate atmosphere (air or O-2-rich), with variation of annealing time and temperature. Optical and structural properties of the investigated films reveal that the temperature of 550 degrees C is responsible for fair oxidation. Results of surface electrical resistivity, Raman and infrared spectroscopies are in good agreement with this finding. X-ray and Raman data also suggest the crystallization of Si nuclei at glass substrate-alumina interface, which would come from the soda-lime glass used as substrate. The main goal in this work is the deposition of alumina on top of SnO2 to build a transparent field-effect transistor. Some microscopy results of the assembled SnO2/Al2O3 heterostructure are also shown.
Resumo:
Alumina thin films have been obtained by resistive evaporation of Al layer, followed by thermal oxidation achieved by annealing in appropriate atmosphere (air or O2-rich), with variation of annealing time and temperature. Optical and structural properties of the investigated films reveal that the temperature of 550°C is responsible for fair oxidation. Results of surface electrical resistivity, Raman and infrared spectroscopies are in good agreement with this finding. X-ray and Raman data also suggest the crystallization of Si nuclei at glass substrate-alumina interface, which would come from the soda-lime glass used as substrate. The main goal in this work is the deposition of alumina on top of SnO2 to build a transparent field-effect transistor. Some microscopy results of the assembled SnO2/Al2O3 heterostructure are also shown.