238 resultados para Espectro de gotas


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Proteção de Plantas) - FCA

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Ciência do Solo) - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Entomologia Agrícola) - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Produção Vegetal) - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this work was to evaluate the effect of the addition of different surfactants in physical and chemical properties of spray solutions, droplets spectra and drift potential on agricultural spraying. The surfactants and concentrations (v v-1) were: Haiten (0.1%), Antideriva and Intec (0.05% and 0.1%). The following characteristics were analyzed: surface tension, viscosity, density and electric conductivity. The droplet size spectrum was determined by a laser particle analyzer (Mastersizer S®, version 2.15) including measurements of volume medium diameter (VMD), the percent of droplets below 50 and 100 μm (V50 e V100) and index span. In order to estimate the drift potential, a series of wind tunnel tests were performed with a Teejet XR 8003 flat fan nozzle at 200 kPa (medium droplets) used to apply the spray solutions containing water, the adjuvants and a food color dye (Brilliant blue FD & C no 1) at 0,6% m v-1. The drift was collected on nylon strips transversally fixed along the tunnel at different distances from the nozzle and different high from the bottom part of the tunnel. Drift deposits were evaluated by spectrophotometry. The results showed that the addition of adjuvants changed physical and chemical properties of spray solutions in different magnitudes according to the surfactant. Surfactants changed the droplet spectrum and drift potential, indicating that higher VMD and smaller V100 induced higher percentage of drift.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The present study had as objectives to verify the effect of rainfastness of different flutriafol formulations, in laboratory conditions, applied on soybean plants with and without the oil adjuvant in the spray solution, as well as to verify the influence of the oil on the droplet spectrum. The experiment considered ten spray solutions related to five treatments containing flutriafol (four formulations of flutriafol and a flutriafol mixture with tebuconazole), all applied with and without mineral oil. Particles size analysis were based on the determination of the droplet spectrum, medium volumetric diameter and the amount of droplets below 100 μm. All the solutions were sprayed with Teejet XR 11001 (fine droplets). Droplet spectrum was determined in a direct way by diffraction of laser (Malvern Mastersizer S®, version 2.15). Confidence interval at 90% degree was used to compare the mean data. The results showed that the addition of mineral oil in the solutions provided tendencies of larger medium volumetric diameter, smaller amount of droplets below than 100 µm and better uniformity of the droplet spectrum. All of the solutions with the addition of mineral oil presented larger adhesion and/or absorption of the fungicide on the plants in comparison with the solutions without oil. The increase of the time between the application and the rain, caused reduction of the fungicide removal, independently of the rain intensity. The increase of the amount of rain didn't change the relative behavior among the solutions; however, this larger amount of rain caused larger fungicide removal along the time. It was observed significant removal of flutriafol by the rain up to 48 hours after the spray application.