23 resultados para Equilibrium.
Resumo:
Mathematical programming problems with equilibrium constraints (MPEC) are nonlinear programming problems where the constraints have a form that is analogous to first-order optimality conditions of constrained optimization. We prove that, under reasonable sufficient conditions, stationary points of the sum of squares of the constraints are feasible points of the MPEC. In usual formulations of MPEC all the feasible points are nonregular in the sense that they do not satisfy the Mangasarian-Fromovitz constraint qualification of nonlinear programming. Therefore, all the feasible points satisfy the classical Fritz-John necessary optimality conditions. In principle, this can cause serious difficulties for nonlinear programming algorithms applied to MPEC. However, we show that most feasible points do not satisfy a recently introduced stronger optimality condition for nonlinear programming. This is the reason why, in general, nonlinear programming algorithms are successful when applied to MPEC.
Resumo:
In this paper, we consider a concept of local Nash equilibrium for non-cooperative games - the so-called weak local Nash equilibrium. We prove its existence for a significantly more general class of sets of strategies than compact convex sets. The theorems on existence of the weak local equilibrium presented here are applications of Brouwer and Lefschetz fixed point theorems. © 2013 Juliusz Schauder Centre for Nonlinear Studies Nicolaus Copernicus University.
Resumo:
The pH values near a planar dissociating membrane are studied under a mean field approximation using the Poisson-Boltzmann equation and its linear form. The equations are solved in planar symmetry with the consideration that the charge density on the dissociating membrane surface results from an equilibrium process with the neighboring electrolyte. Results for the membrane dissociation degree are presented as a function of the electrolyte ionic strength and membrane surface charge density. Our calculations indicate that pH values have an appreciable variation within 2 nm from the membrane. It is shown that the dissociation process is enhanced due to the presence of bivalent ions and that pH values acquire better stability than in an electrolyte containing univalent ions.
Resumo:
The objective of this work is to develop a non-stoichiometric equilibrium model to study parameter effects in the gasification process of a feedstock in downdraft gasifiers. The non-stoichiometric equilibrium model is also known as the Gibbs free energy minimization method. Four models were developed and tested. First a pure non-stoichiometric equilibrium model called M1 was developed; then the methane content was constrained by correlating experimental data and generating the model M2. A kinetic constraint that determines the apparent gasification rate was considered for model M3 and finally the two aforementioned constraints were implemented together in model M4. Models M2 and M4 showed to be the more accurate among the four developed models with mean RMS (root mean square error) values of 1.25 each.Also the gasification of Brazilian Pinus elliottii in a downdraft gasifier with air as gasification agent was studied. The input parameters considered were: (a) equivalence ratio (0.28-035); (b) moisture content (5-20%); (c) gasification time (30-120 min) and carbon conversion efficiency (80-100%). (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work is to develop stoichiometric equilibrium models that permit the study of parameters effect in the gasification process of a particular feedstock. In total four models were tested in order to determine the syngas composition. One of these four models, called M2, was based on the theoretical equilibrium constants modified by two correction factors determined using published experimental data. The other two models, M3 and M4 were based in correlations, while model M4 was based in correlations to determine the equilibrium constants, model M3 was based in correlations that relate the H-2, CO and CO2 content on the synthesis gas. Model M2 proved to be the more accurate and versatile among these four models, and also showed better results than some previously published models. Also a case study for the gasification of a blend of hardwood chips and glycerol at 80% and 20% respectively, was performed considering equivalence ratios form 0.3 to 0.5, moisture contents from 0%-20% and oxygen percentages in the gasification agent of 100%, 60% and 21%. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)