137 resultados para Equation of motion
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A mapping scheme is presented which takes quantum operators associated to bosonic degrees of freedom into complex phase space integral kernel representatives. The procedure consists of using the Schrödinger squeezed state as the starting point for the construction of the integral mapping kernel which, due to its inherent structure, is suited for the description of second quantized operators. Products and commutators of operators have their representatives explicitly written which reveal new details when compared to the usual q-p phase space description. The classical limit of the equations of motion for the canonical pair q-p is discussed in connection with the effect of squeezing the quantum phase space cellular structure. © 1993.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
According to the teleparallel equivalent of general relativity, curvature and torsion are two equivalent ways of describing the same gravitational field. Though equivalent, they act differently: curvature yields a geometric description, in which the concept of gravitational force is absent whereas torsion acts as a true gravitational force, quite similar to the Lorentz force of electrodynamics. As a consequence, the right-hand side of a spinless-particle equation of motion (which would represent a gravitational force) is always zero in the geometric description, but not in the teleparallel case. This means that the gravitational coupling prescription can be minimal only in the geometric case. Relying on this property, a new gravitational coupling prescription in the presence of curvature and torsion is proposed. It is constructed in such a way to preserve the equivalence between curvature and torsion, and its basic property is to be equivalent to the usual coupling prescription of general relativity. According to this view, no new physics is connected with torsion, which is just an alternative to curvature in the description of gravitation. An application of this formulation to the equations of motion of both a spinless and a spinning particle is discussed.
Resumo:
A bicomplex structure is associated with the Leznov-Saveliev equation of integrable models. The linear problem associated with the zero-curvature condition is derived in terms of the bicomplex linear equation. The explicit example of a non-Abelian conformal affine Toda model is discussed in detail and its conservation laws are derived from the zero-curvature representation of its equation of motion.
Resumo:
We evaluate the cubic interaction term in the action of open bosonic string field theory for Schnabl's solution written in terms of Bernoulli numbers. This computation provides us with new evidence for the fact that the string field equation of motion is satisfied when it is contracted with the solution itself.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Using the operator formalism, we obtain the bosonic representation for the free fermion field satisfying an equation of motion with higher-order derivatives. Then, we consider the operator solution of a generalized Schwinger model with higher-derivative coupling. Since the increasing of the derivative order implies the introduction of an equivalent number of extra fermionic degrees of freedom, the mass acquired by the gauge field is bigger than the one for the standard two-dimensional QED. An analysis of the problem from the functional integration point of view corroborates the findings of canonical quantization, and corrects certain results previously announced in the literature on the basis of Fujikawa's technique.
Resumo:
A study was developed in order to build a function M invariant in time, by means of Hamiltonian's formulation, taking into account the equation associated to the problem, showing that starting from this function the equation of motion of the system with the contour conditions for non-conservative considered problems can be obtained. The Hamiltonian method is extended for these kind of systems in order to validate for non-potential operators through variational approach.
Resumo:
An analytical approach for spin stabilized attitude propagation is presented, considering the coupled effect of the aerodynamic torque and the gravity gradient torque. A spherical coordination system fixed in the satellite is used to locate the satellite spin axis in relation to the terrestrial equatorial system. The spin axis direction is specified by its right ascension and the declination angles and the equation of motion are described by these two angles and the magnitude of the spin velocity. An analytical averaging method is applied to obtain the mean torques over an orbital period. To compute the average components of both aerodynamic torque and the gravity gradient torque in the satellite body frame reference system, an average time in the fast varying orbit element, the mean anomaly, is utilized. Afterwards, the inclusion of such torques on the rotational motion differential equations of spin stabilized satellites yields conditions to derive an analytical solution. The pointing deviation evolution, that is, the deviation between the actual spin axis and the computed spin axis, is also availed. In order to validate the analytical approach, the theory developed has been applied for spin stabilized Brazilian satellite SCD1, which are quite appropriated for verification and comparison of the data generated and processed by the Satellite Control Center of the Brazil National Research Institute (INPE). Numerical simulations performed with data of Brazilian Satellite SCD1 show the period that the analytical solution can be used to the attitude propagation, within the dispersion range of the attitude determination system performance of Satellite Control Center of the Brazilian Research Institute.
Resumo:
Pós-graduação em Física - FEG
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
In this work we study some topics of Celestial Mechanics, namely the problem of rigid body rotation and “spin-orbit” resonances. Emphasis is placed on the problem formulation and applications to some exoplanets with physical parameters (e.g. mass and radius) compatible with a terrestrial type constitution (e.g. rock) belonging to multiple planetary systems. The approach is both analytical and numerical. The analytical part consists of: i) the deduction of the equation of motion for the rotation problem of a spherical body with no symmetry, disturbed by a central body; ii) modeling the same problem by including a third-body in the planet-star system; iii) formulation of the concept of “spin-orbit” resonance in which the orbital period of the planet is an integer multiple of the rotation’s period. Topics of dynamical systems (e.g. equilibrium points, chaos, surface sections, etc.) will be included at this stage. In the numerical part simulations are performed with numerical models developed in the previous analytical section. As a first step we consider the orbit of the planet not perturbed by a third-body in the star-planet system. In this case the eccentricity and orbital semi-major axis of the planet are constants. Here the technique of surface sections, widely used in dynamical systems are applied. Next, we consider the action of a third body, developing a more realistic model for planetary rotation. The results in both cases are compared. Since the technique of disturbed surface sections is no longer applicable, we quantitatively evaluate the evolution of the characteristic angles of rotation (e.g. physical libration) by studying the evolution of individual orbits in the dynamically important regions of phase space, the latter obtained in the undisturbed case
Resumo:
Pós-graduação em Física - IFT
Resumo:
Pós-graduação em Física - IFT