54 resultados para Engineering materials


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Titanium and its alloys provide high strength-to-weight ratios, good fatigue strength and increased corrosion resistance compared with others materials. Its acceptance in aerospace has been limited by costs considerations such as high cost of raw material, high buy-to-fly ratios and expensive machining operations. Significant cost reductions can be obtained by vacuum sintering and powder metallurgy (P/M) techniques by producing near net shapes and consequently minimizing material waste and machining time. The Ti 35Nb alloy exhibit a low modulus of elasticity. Stemming from the unique combination of high strength, low modulus of elasticity and low density, this alloy is intrinsically more resistant to shock and explosion damages than most other engineering materials. Samples were produced by mixing of initial metallic powders followed by uniaxial and cold isostatic pressing with subsequent densification by sintering between 900 and 1600 °C, in vacuum. Sintering behavior was studied by means of dilatometry. Sintered samples were characterized for phase composition, microstructure and microhardness by X-ray diffraction, scanning electron microscopy and Vickers indentation, respectively. Density was measured by Archimedes method. Copyright © 2004 Society of Automotive Engineers, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent studies have been done to achieve biomedical alloys containing non-toxic elements and presenting low elastic moduli. It has been reported that Ti-Nb-Zr alloys rich in beta phase, especially Ti-13Nb-13Zr, have potential characteristics for substituting conventional materials such as Ti-6Al-4V, stainless steel and Co alloys. The aim of this work is to study the internal friction (IF) of Ti-13Nb-13Zr (TNZ) alloy due to the importance of the absorption impacts in orthopedic applications. The internal friction of this alloy produced by arc melting was measured using an inverted torsion pendulum with the free decay method. The measurements were performed from 77 to 700 K with heating rate of 1 K/min, in a vacuum better than 10-5 mBar. The results show a relaxation structure at high temperature strongly dependent on microstructure of the material. Qualitative discussions are presented for the experimental results, and the possibility of using the TNZ as a high damping material is briefly mentioned.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wollastonite bioceramics prepared from synthetic and natural precursors were implanted in rats in bone and subcutaneous tissues. The implant sites were excised after 7, 30 and 120 days, fixed, dehydrated, embedded in paraffin wax for serial cutting and examined under transmitted light microscope. It was found a very similar behavior for both wollastonite bioceramics. They were biocompatible, bioactive and biodegradable when implanted in rat bone. The synthetic ceramic was more reabsorbable than the one from natural powder. When implanted in subcutaneous rat tissue, both materials elicited a mild initial inflammatory reaction that practically disappeared after 120 days. Both materials were encapsulated with a very thin fibrous capsule and slightly reabsorbed at their surfaces. None of the materials induced ectopic osteogenesis. According to the results, the studied materials seem to be able for manufacturing reabsorbable bone implants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aluminium alloy (AA) 2024-T3 is an important engineering material due to its widespread use in the aerospace industry. However, it is very prone to localized corrosion attack in chloride containing media, which has been mainly associated to the presence of coarse intermetallics (IMs). In this work the corrosion behaviour of aluminium alloy 2024-T3 in low concentrated chloride media was investigated using microscopy and electrochemical methods. SEM observations have shown that intermetallics with the same nominal composition present heterogeneous reaction rates, and that both types of coarse IMs normally found in the AA 2024-T3 microstructure corrode. Moreover, EDS analyses have shown important compositional changes in the corroded IMs, evidencing the selective corrosion of their more active constituents and the onset of an intense oxygen peak, irrespective to the IM nature. TEM/EDS observations on non-corroded samples have evidenced the heterogeneous composition within the IMs. On the other hand, the results of the electrochemical investigations, in accordance with the SEM/EDS observations, have evidenced that IMs corrosion dominates the electrochemical response of the alloy during the first hours of immersion in the test electrolyte. © 2009 by NACE International.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The osseointegration of porous titanium implants was evaluated in the present work. Implants were fabricated from ASTM grade 2 titanium by a powder metallurgy method. Part of these implants were submitted to chemical and thermal treatment in order to deposit a biomimetic coating, aiming to evaluate its influence on the osseointegration of the implants. The implants were characterized by Scanning Electron Microscopy (SEM), Electron Dispersive X-Ray Spectroscopy (EDS) and Raman Spectroscopy. Three coated and three control (uncoated) implants were surgically inserted into thirty albino rabbits' left and right tibiae, respectively. Tibiae samples were submitted to histological and histomorphometric analyses, utilizing SEM, optical microscopy and mechanical tests. EDS results indicated calcium (Ca) and phosphorous (P) at the surface and Raman spectra exhibited an intense peak, characteristic of hydroxyapatite (HA). Bone neoformation was detected at the bone-implant interface and inside the pores, including the central ones. The mean bone neoformation percentage in the coated implants was statistically higher at 15 days, compared to 30 and 45 days. The mechanical tests showed that coated implants presented higher resistance to displacement, especially after 30 and 45 days.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bioceramics with different Ca/P ratio were prepared from a mechanical mixture of NaPO3, CaCO3, Ca(OH)2 and phosphate buffer solution and implanted in rats subcutaneous tissues. The cements were characterized by Thermo gravimetric analysis (TG-TDA), X-ray diffraction and 31P-NMR. The implant sites were excised after 1, 4 and 16 weeks, fixed, dehydrated, included in paraffin wax for serial cutting and examined under the light transmitted microscope. They were biocompatible and biodegradable when implanted in rat subcutaneous. None of the materials induced ectopic osteogenesis. According to the results, the studied materials seem to be able for manufacturing reabsorbable bone implants.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The biological response following subcutaneous and bone implantation of β-wollastonite(β-W)-doped α-tricalcium phosphate bioceramics in rats was evaluated. Tested materials were: tricalcium phosphate (TCP), consisting of a mixture of α- and β-polymorphs; TCP doped with 5 wt. % of β-W (TCP5W), composed of α-TCP as only crystalline phase; and TCP doped with 15 wt. % of β-W (TCP 15), containing crystalline α-TCP and β-W. Cylinders of 2×1 mm were implanted in tibiae and backs of adult male Rattus norvegicus, Holtzman rats. After 7, 30 and 120 days, animals were sacrificed and the tissue blocks containing the implants were excised, fixed and processed for histological examination. TCP, TCP5W and TCP15W implants were biocompatible but neither bioactive nor biodegradable in rat subcutaneous tissue. They were not osteoinductive in connective tissue either. However, in rat bone tissue β-W-doped α-TCP implants (TCP5W and TCP 15W) were bioactive, biodegradable and osteoconductive. The rates of biodegradation and new bone formation observed for TCP5W and TCP15W implants in rat bone tissue were greater than for non-doped TCP.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study aimed to develop porous hydroxyapatite scaffold for bone regeneration using the replica of the polymeric sponge technique. Polyurethane sponges were used with varying densities to obtain the scaffolds. The results indicate the porous HA scaffolds developed in this study as potential materials for application as bone substitutes to have high porosity (> 70%), chemical composition, interconnectivity and pore sizes appropriate to the bone regeneration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Leakage in buried pipes is one of the main concerns for water companies due to the scarcity of potable water sources. Older metallic pipelines have been replaced by plastic pipes in such systems, which makes it more difficult to locate leaks using acoustics and vibration. This is mainly because of the high attenuation of leak signals caused by the damping in the pipe wall. To investigate acoustic methods in leak location in controlled conditions, a bespoke test rig was constructed in the UK. In this paper, data from this test-rig is used to discuss some issues that arise when using two contemporary correlators. Of particular interest, is the way in which a resonance in the system can have a profound effect on the estimate of the position of the leak depending on the way in which the leak noise signals are processed. © (2013) Trans Tech Publications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To determine the location of leaks in buried water pipes, acoustic methods are often used. These have proven to be very effective in metallic pipes but have been problematic in modern plastic pipes. In this paper the reason why this is so is discussed together with some measurements that were made on a bespoke test rig built by South Staffs Water plc. A particular problem is the estimate of the wavespeed. Tables are frequently used for this purpose, but these are often inaccurate and this means that a leak cannot be located accurately. An in-situ measure of the wavespeed is thus preferable. In this paper it is shown that there are significant issues in obtaining an accurate estimate of the wavespeed when a leak is present in the system. A method is proposed that overcomes some of these problems, which is discussed and is demonstrated using some data from the bespoke test-rig. © (2013) Trans Tech Publications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Structural damage identification is basically a nonlinear phenomenon; however, nonlinear procedures are not used currently in practical applications due to the complexity and difficulty for implementation of such techniques. Therefore, the development of techniques that consider the nonlinear behavior of structures for damage detection is a research of major importance since nonlinear dynamical effects can be erroneously treated as damage in the structure by classical metrics. This paper proposes the discrete-time Volterra series for modeling the nonlinear convolution between the input and output signals in a benchmark nonlinear system. The prediction error of the model in an unknown structural condition is compared with the values of the reference structure in healthy condition for evaluating the method of damage detection. Since the Volterra series separate the response of the system in linear and nonlinear contributions, these indexes are used to show the importance of considering the nonlinear behavior of the structure. The paper concludes pointing out the main advantages and drawbacks of this damage detection methodology. © (2013) Trans Tech Publications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The biological behavior of a new bioactive material composed of calcium-deficient hydroxyapatite, octacalcium phosphate, and beta-tricalcium phosphate was investigated by in vitro indirect and direct cytotoxicity, cell adhesion and proliferation tests, and by in vivo subcutaneous and bone implantation in rats. The results of the in vitro studies showed that the material is biocompatible and no cytotoxic. Slightly poorer initial cell adhesion and lower cell proliferation than in control was observed, which were attributed to the reactivity and roughness of the material surface, In vivo results showed that the material is biodegradable and bioactive in bone tissue, but only biocompatible and partially biodegradable in soft tissue.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pechini's method has been successfully used to prepare Li-doped MgNb2O6(MN) at short time and low temperature. It consists in the preparation of metal citrate solution, which is polymerized at 250°C to form a high viscous resin. This resin was burned in a box type furnace at 400°C/2h and ground in a mortar. Successive steps of calcination up to 900°C were used to form a crystalline precursor. SEM, DTA and XRD were used to characterize the powders. MN precursor powders containing from 0.1 to 5.0 mol% of LiNbO3 additive was prepared aiming better dielectric properties and microstructural characteristics of the PMN prepared from columbite route. SEM analysis showed that particles increased by sintering, forming large agglomerates. The surface area is also substantially reduced with the increase in additive amount above 1.0 mol%. In XRD pattern of the precursor material with 5.0 mol% of additive was observed the LiNbO3 phase of trigonal structure. XRD data were used for Rietveld refinement and a decrease in microstrain and pronounced increase in crystallite size with the increase of LiNbO3 were observed. It is in agreement with the particle morphologies observed by SEM analysis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of bamboo as construction and raw material for producing products can be considered a feasible alternative to the abusive use of steel, concrete and oil byproducts. Its use can also reduce the pressure on the use of wood from native and planted forests. Although there are thousands of bamboo species spread about the world and Brazil itself has hundreds of native species, the use and basic knowledge of its characteristics and applications are still little known and little disseminated. This paper's main objective is to introduce the species, the management phases, the physical and mechanical characteristics and the experiences in using bamboo in design and civil construction as per the Bamboo Project implemented at UNESP, Bauru campus since 1994. The results are divided into: a) Field activities - description of the technological species of interest, production chain flows, types of preservative treatments and clump management practices for the development, adaptation and production of different species of culms; b) Lab experiments - physical and mechanical characterization of culms processed as laminated strips and as composite material (glue laminated bamboo – glubam); c) Uses in projects - experiences with natural bamboo and glubam in design, architecture and civil construction projects. In the final remarks, the study aims to demonstrate, through practical and laboratory results, the material's multi-functionality and the feasibility in using bamboo as a sustainable material.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work deals with the initial applications and formulation of an aniscitropic plastic-damage constitutive model proposed for non-linear analysis of reinforced concrete structures submitted to a loading with change of the sign. The original constitutive model is based on the fundamental hypothesis of energy equivalence between real and continuous medium following the concepts of the Continuum Damage Mechanics. The concrete is assumed as an initial elastic isotropic medium presenting anisotropy, permanent strains and bimodularity (distinct elastic responses whether traction or compression stress states prevail) induced by damage evolution. In order to take into account the bimodularity, two damage tensors governing the rigidity in tension or compression regimes are introduced. Then, some conditions are introduced in the original version of the model in order to simulate the damage unilateral effect. The three-dimensional version of the proposed model is analyzed in order to validate its formulation when compared to micromechanical theory. The one-dimensional version of the model is applied in the analyses of a reinforced concrete beam submitted to a loading with change of the sign. Despite the parametric identification problems, the initial applications show the good performance of the model.