25 resultados para Energy Efficient Vehicles
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Recent lines of evidences indicate that several pathological conditions, as cardiovascular diseases, are associated with oxidative stress. In order to validate a butylated hydroxytoluene (BHT)-induced experimental model of oxidative stress in the cardiac tissue and serum lipids, 12 Wistar rats were divided into two groups, a control group and the BHT group, Which received BHT i.p. twice a week (1500 mg/kg body Weight) during 30 days. BHT group presented lower body weight gain and heart weight. BHT induced toxic effects on serum through increased triacylglycerols (TG), VLDL and LDL-cholesterol concentrations. The heart of BHT animals showed alteration of antioxidant defenses and increased concentrations of lipid hydroperoxides, indicating elevated lipoperoxidation. TG concentrations and lactate dehydrogenase activities were elevated in the cardiac Muscle of BHT animals. Thus, long-term administration of BHT is capable to induce oxidative and metabolic alterations similarly to some pathological disorders, constituting an efficient experimental model to health scientific research. (c) 2005 Elsevier GrnbH. All rights reserved.
Resumo:
As an application of the new realistic three-dimensional (3D) formalism reported recently for three-nucleon (3N) bound states, an attempt is made to study the effect of three-nucleon forces (3NFs) in triton binding energy in a non partial wave (PW) approach. The spin-isospin dependent 3N Faddeev integral equations with the inclusion of 3NFs, which are formulated as function of vector Jacobi momenta, specifically the magnitudes of the momenta and the angle between them, are solved with Bonn-B and Tucson-Melbourne NN and 3N forces in operator forms which can be incorporated in our 3D formalism. The comparison with numerical results in both, novel 3D and standard PW schemes, shows that non PW calculations avoid the very involved angular momentum algebra occurring for the permutations and transformations and it is more efficient and less cumbersome for considering the 3NF.
Resumo:
Red, green, and blue emission through frequency upconversion and energy-transfer processes in tellurite glasses doped with Tm3+ and Er3+ excited at 1.064 mum is investigated. The Tm3+/Er3+-codoped samples produced intense upconversion emission signals at around 480, 530, 550 and 660 nm. The 480 nm blue emission was originated from the (1)G(4)-->H-3(6) transition of the Tm3+ ions excited by a multiphoton stepwise phonon-assisted excited-state absorption process. The 5 30, 5 50 nm green and 660 mn red upconversion luminescences were identified as originating from the H-2(11/2), S-4(3/2) --> I-4(15/2) and F-4(9/2) --> I-4(15/2) transitions of the Er3+ ions, respectively, populated via efficient cross-relaxation processes and excited-state absorption. White light generation employing a single infrared excitation source is also examined. (C) 2003 Elsevier B.V. (USA). All rights reserved.
Resumo:
We report the energy-transfer mechanisms and emission quantum yield measurements of sol-gel-derived Eu3+-based nanohybrids. The matrix of these materials, classified as diureasils and termed U(2000) and U(600), includes urea cross-links between a siliceous backbone and polyether-based segments of two molecular weights, 2000 and 600, respectively. These materials are full-color emitters in which the Eu3+ (5)Do --> F-7(0-4) lines merge with the broad green-blue emission of the nanoscopic matrix's backbone. The excitation spectra show the presence of a large broad band (similar to 27000-29000 cm(-1)) undoubtedly assigned to a ligand-to-metal charge-transfer state. Emission quantum yields range from 2% to 13.0% depending on the polymer molecular weight and Eu3+ concentration. Energy transfer between the hybrid hosts and the cations arises from two different and independent processes: the charge-transfer band and energy transfer from the hybrid's emitting centers. The activation of the latter mechanisms induces a decrease in the emission quantum yields (relative to undoped nanohybrids) and permits a fine-tuning of the emission chromaticity across the Comission Internacionalle d'Eclairage diagram, e.g., (x, y) color coordinates from (0.21, 0.24) to (0.39, 0.36). Moreover, that activation depends noticeably on the ion local coordination. For the diureasils with longer polymer chains, energy transfer occurs as the Eu3+ coordination involves the carbonyl-type oxygen atoms of the urea bridges, which are located near the hybrid's host emitting centers. on the contrary, in the U(600)-based diureasils, the Eu3+ ions are coordinated to the polymer chains, and therefore, the distance between the hybrid's emitting centers and the metal ions is large enough to allow efficient energy-transfer mechanisms.
Resumo:
In five male cirrhotic patients (Child A) and in four age- and sex-matched healthy control subjects, whole-body protein turnover was measured using a single oral dose of N-15-glycine as a tracer and urinary ammonia as end product. Subjects were studied in the fasting and feeding state, with different levels of protein and energy intake. The patients were underweight and presented lower plasma transthyretin and retinol-binding protein levels. When compared with controls, the kinetic studies showed patients to be hypometabolic in the fasting (Do) state and with the control diet [D-1 = (0.85 g of protein/154 kJ). kg(-1). day(-1)]. However, when corrected by body weight, the kinetic differences between groups disappeared, whereas the N-retention in the feeding state showed better results for the patients due mainly to their efficient breakdown decrease. When fed high-level protein or energy diets [D-2 = (0.9 g protein/195 kJ) and D-3 = (1.56 g protein/158 kJ). kg(-1). day(-1)], the patients showed D-0 = D-1 = D-2 < D-3 for N-flux and (D-0 = D-1) < D-3 (D-2 is intermediary) for protein synthesis. Thus, the present data suggest that the remaining mass of the undernourished mild cirrhotic patients has fairly good protein synthesis activity and also that protein, rather than energy intake, would be the limiting factor for increasing their whole-body protein synthesis.
Resumo:
Short-term cold exposure of homeothermic animals leads to higher thermogenesis and food consumption accompanied by weight loss. An analysis of cDNA-macroarray was employed to identify candidate mRNA species that encode proteins involved in thermogenic adaptation to cold. A cDNA-macroarray analysis, confirmed by RT-PCR, immunoblot, and RIA, revealed that the hypothalamic expression of melanin-concentrating hormone (MCH) is enhanced by exposure of rats to cold environment. The blockade of hypothalamic MCH expression by antisense MCH oligonucleotide in cold-exposed rats promoted no changes in feeding behavior and body temperature. However, MCH blockade led to a significant drop in body weight, which was accompanied by decreased liver glycogen, increased relative body fat, increased absolute and relative interscapular brown adipose tissue mass, increased uncoupling protein 1 expression in brown adipose tissue, and increased consumption of lean body mass. Thus, increased hypothalamic MCH expression in rats exposed to cold may participate in the process that allows for efficient use of energy for heat production during thermogenic adaptation to cold.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cooperative energy-transfer upconversion luminescence in Tb 3+/Yb 3+-codoped PbGeO 3-PbF 2-CdF 2 vitroceramic and its precursor glass under resonant and off-resonance infrared excitation, is investigated. Bright UV-visible emission signals around 384, 415, 438 nm, and 473-490, 545, 587, and 623 nm, identified as due to the 5D 3( 5G 6 → 7F J(J=6,5,4) and 5D 4 → 7F J(J=6,5,4,3) transitions, respectively, were readily observed. The results indicate that cooperative energy-transfer between ytterbium and terbium ions followed by excited-state absorption are the dominant upconversion excitation mechanisms herein involved. The comparison of the upconversion process in a vitroceramic sample and its glassy precursor revealed that the former present much higher upconversion efficiency. The dependence of the upconversion emission upon pump power, temperature, and doping content is also examined.